Please wait a minute...
Acta Phys. Chim. Sin.  2011, Vol. 27 Issue (01): 193-198    DOI: 10.3866/PKU.WHXB20110124
Controlled Growth of Self-Assembled ZnO Thin Films and Characterization of Their Photocatalytic Properties
XIE Juan1,2, WANG Hu1,2, DUAN Ming1
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China;
2. College of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
Download:   PDF(711KB) Export: BibTeX | EndNote (RIS)      


Self-assembled ZnO thin films with controlled sizes were successfully prepared by varying the processing parameters. The films have a photonic band gap, which extends the absorption range to the visible light region. The photocatalytic activities of the ZnO thin films were evaluated by the degradation of methyl orange (MO). The crystal structure of ZnO was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the ZnO thin films exhibit good photocatalytic activities under sunlight. Furthermore, the photocatalytic activities of the ZnO thin films were highly dependent on sphere size. With an increase in ZnO sphere size, the degradation efficiency toward MO decreased. The photodegradation can be described using a pseudo-first-order kinetics equation.

Key wordsZnO      Self-assembly      Controlled growth      Photonic band gap      Photocatalysis     
Received: 27 July 2010      Published: 08 December 2010
MSC2000:  O643  

The project was supported by the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University, SWPU), China (PLN0805).

Corresponding Authors: WANG Hu     E-mail:
Cite this article:

XIE Juan, WANG Hu, DUAN Ming. Controlled Growth of Self-Assembled ZnO Thin Films and Characterization of Their Photocatalytic Properties. Acta Phys. Chim. Sin., 2011, 27(01): 193-198.

URL:     OR

1 Karunakaran, C.; Dhanalakshmi, R. Radiat. Phys. Chem., 2009, 78: 8
2 Lu, H. M.; Takata, T.; Lee, Y. Chem. Mater., 2004, 16: 846
3 Liao, D. L.; Badour, C. A.; Liao, B. Q. J. Photoch. Photobio. A, 2008, 194(1): 11
4 Hu, J. Q.; Bando, Y. Appl. Phys. Lett., 2003, 82: 1401
5 Su, C.; Hong, B. Y.; Tseng, C. M. Catal. Today, 2004, 96: 119
6 Kansal, S. K.; Singh, M.; Sud, D. J. Hazard. Mater., 2008, 153: 412
7 Evgenidou, E.; Konstantinou, I.; Fytianos, K.; Poulios, I.; Albanis, T. Catal. Today, 2007, 124: 156
8 Karunakaran, C.; Dhanalakshmi, R. Sol. Energ. Mat. Sol. C, 2008, 92: 1315
9 Zhang, J. H.; Xiao, X.; Nan, J. M. J. Hazard. Mater., 2010, 176: 617
10 Sun, X. M.; Deng, Z. X.; Li, Y. D. Mater. Chem. Phys., 2003, 80: 366
11 Gao, P. X.;Wang, Z. L. J. Am. Chem. Soc., 2003, 125: 11299
12 Zhai, X. H; Long, H. J.; Dong, J. Z.; Cao, Y. A. Acta Phys. -Chim. Sin., 2010, 26: 663
[翟晓辉, 龙绘锦, 董江舟, 曹亚安. 物理化学学报, 2010, 26: 663]
13 Devi, L. G.; Reddy, K. M. Appl. Surf. Sci., 2010, 256: 3116
14 Nguyen-Phan, T. D.; Pham, V. H.; Cuong, T. V.; Hahn, S. H.; Kim, E. J.; Chung, J. S.; Hur, S. H.; Shin, E.W. Mater. Lett., 2010, 64: 1387
15 Zhang, Y. R.;Wan, J.; Ke, Y. Q. J. Hazard. Mater., 2010, 177: 750
16 Zhu, X. Q.; Zhang, J. L.; Chen, F. Chemosphere, 2010, 78: 1350
17 Vayssieres, L. Adv. Mater., 2003, 15(5): 464
18 Ullah, R.; Dutta, J. J. Hazard. Mater., 2008, 156: 194
19 Xie, J. S.;Wu, Q. S. Mater. Lett., 2010, 64: 389
20 Sobana, N.; Swaminathan, M. Sol. Energ. Mat. Sol. C, 2007, 91: 727
21 Daneshvar, N.; Aber, S.; Seyed Dorraji, M. S.; Khataee, A. R.; Rasoulifard, M. H. Sep. Purif. Technol., 2007, 58: 91
22 Liu, Z. L.; Deng, J. C.; Deng, J. J.; Li, F. F. Mat. Sci. Eng. B-Solid, 2008, 150: 99
23 Xie, J.; Deng, H.; Xu, Z. Q.; Li, Y.; Huang, J. J. Cryst. Growth, 2006, 292: 227
24 Wang, H.; Yan, K. P.; Xie, J.; Duan, M. Mat. Sci. Semicon. Proc., 2008, 11: 44
25 Yang, H. Q.; Li, L.; Song, Y. Z.; He, P.; Yang,W. Y.; Ma, J. H.; Chen, D. C.; Fang, Y. Sci. China Ser. B, 2007, 37:418
[杨合情, 李丽, 宋玉哲, 贺萍, 杨文玉, 马军虎, 陈迪春, 房喻. 中国科学B: 化学, 2007, 37:418]
26 Yassitepe, E.; Yatmaz, H. C.; Ozturk, C.; Ozturk, K.; Duran, C. J. Photoch. Photobio. A, 2008, 198: 1
27 Rao, A. N.; Sivasankar, B.; Sadasivam, V. J. Hazard. Mater., 2009, 166: 1357

[1] XU Li-Gang, QIU Wei, CHEN Run-Feng, ZHANG Hong-Mei, HUANG Wei. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. Chim. Sin., 2018, 34(1): 36-48.
[2] ZHANG Hong-Zhi, ZHANG Zhi-Qing, WANG Fang, ZHOU Ting, WANG Xiu-Feng, ZHANG Guo-Dong, LIU Ting-Ting, LIU Shu-Zhen. Application of Structural DNA Nanotechnology[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1520-1532.
[3] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[4] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1010-1016.
[5] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[6] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[7] ZHANG Zhen, XIE Wen-Jun, YANG Yi Isaac, SUN Geng, GAO Yi-Qin. Simulation Studies of the Self-Assembly of Halogen-Bonded Sierpiński Triangle Fractals[J]. Acta Phys. Chim. Sin., 2017, 33(3): 539-547.
[8] YANG Hai-Kuan. A Solution-Based Self-Assembly Approach to Preparing Functional Supramolecular Hybrid Materials[J]. Acta Phys. Chim. Sin., 2017, 33(3): 582-589.
[9] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[10] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2284-2292.
[11] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[12] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[13] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[14] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[15] WANG Yun-He, QIN Yuan, YAO Man, WANG Xu-Dong, LI Shu-Ying, WANG Dong, CHEN Ting. Molecular Dynamics Simulation of a Chiral Self-Assembled Structure of a BIC and HA System on a HOPG Surface Driven by Hydrogen Bonds[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2255-2263.