Please wait a minute...
Acta Phys. -Chim. Sin.  2011, Vol. 27 Issue (02): 363-368    DOI: 10.3866/PKU.WHXB20110207
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Adsorption of O2 and CN on the Copper Activated Sphalerite (110) Surface
CHEN Ye1, CHEN Jian-Hua1,2, GUO Jin2
1. College of Resources and Metallurgy, Guangxi University, Nanning 530004, P. R. China;
2. College of Physics Science and Technology, Guangxi University, Nanning 530004, P. R. China
Download:   PDF(999KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The simulations of O2 and CN adsorption on copper activated sphalerite (110) surface are performed by using plane wave-pseudopotential approach based on density functional theory. The results show that the density of states of 3d orbital of Cu atom on the activated sphalerite surface is located around the Fermi level, which can enhance the reactivity of the sphalerite surface. O2 adsorption is unavailable on unactivated sphalerite surface, while the Cu and S atoms on the copper activated sphalerite surface can donate electrons to the anti-bonding orbital π2p* of the O atom to form the adsorption bonding. The simulation of CN adsorption shows that copper activation improves the adsorption between CN molecule and the sphalerite surface. The Cu d orbital interacts with C p orbital to form a back donating π bonding, and the S atom interacts with the N atom.



Key wordsSphalerite      Copper activation      Surface adsorption      Density functional theory     
Received: 19 June 2010      Published: 22 December 2010
MSC2000:  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (50864001) and Scientific Research Foundation of Guangxi University, China (XBZ100459).

Corresponding Authors: CHEN Jian-Hua     E-mail: jhchen1971@sina.com
Cite this article:

CHEN Ye, CHEN Jian-Hua, GUO Jin. Adsorption of O2 and CN on the Copper Activated Sphalerite (110) Surface. Acta Phys. -Chim. Sin., 2011, 27(02): 363-368.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB20110207     OR     http://www.whxb.pku.edu.cn/Y2011/V27/I02/363

(1) Fuerstenao, M. C. Flotation. A. M. Caudin Memorial Volume; etallurgy Industry Press: Beijing, 1981.
[富尔斯特瑙M. C. 选(纪念A.M.高登文集). 北京: 冶金工业出版社, 1981.]
(2) Finkelstein, N. P. Int. J. Miner. Process. 1997, 52, 81.
(3) Popov, S. R.; Vucinic, D. R. Colloid Surf. 1990, 47, 81.
(4) Gerson, A. R; Lange, A. G..; Prince, K. E. J. Appl. Surf. Sci. 1999, 137, 207
(5) Hu, X.G.. Flotation of Nonferrous Sulphide Ore; Metallurgy ndustry Press: Beijing, 1987.
[胡熙庚. 有色金属硫化矿浮选. 京: 冶金工业出版社, 1987.]
(6) Sutherland, K. L.;Wark, I.W. Principles of flotation; ustralasian Institute of Mining and Metallurgy: Melbourne, 1955.
(7) Pattrick, R. A. D.; England, K. E. R.; Charnock, J. M.; osselmans, J. F.W. Int. J. Miner. Process. 1999, 55, 247.
(8) Chandra, A.P.; Gerson, A. R. Adv. Colloid Interface Sci. 2009, 45, 97.
(9) Richardson, P. E.; O’Dell, C. S. J. Electrochem. Soc. 1985, 132, 350.
(10) Glembotsky, B. A . Flotation Foundation of Physical Chemistry n the Process of Flotation; Trans. Zheng, F. Metallurgy ndustry Press: Beijing, 1985.
[B A 格列姆博茨基.浮选过程 理化学基础; 郑飞, 译. 北京: 冶金工业出版社, 1985.]
(11) Payne, M.C. ; Teter, M. P.; Allan, D. C.; Arias, T. A.; oannopoulos, J. D. Rev. Mod Phys. 1992, 64, 1045.
(12) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 7, 3865.
(13) Perdew, J. P.;Wang, Y. Phys. Rev. B 1992, 45, 13244.
(14) Vanderbilt, D. Phys. Rev. 1990, 41, 7892.
(15) Monkhorst, H. J.; Pack, J. D.; Phys. Rev. B 1976, 13, 5188.
(16) Fletcher, R. Comput. J. 1970, 13, 317.
(17) Lide, D. R. Handbook of Chemistry and Physics; CRC: Boca aton, 2001.
(18) Yin, Y. J. Handbook of Chemistry and physics; Higher ducation Press: Beijing, 1988.
[印永嘉. 物理化学手册. 北 : 高等教育出版社, 1988.]
(19) Hu, J. M.; Li, Y. Acta Chim. Sin. 2004, 62, 1185.
[胡建明, 李 . 化学学报, 2004, 62, 1185.]

[1] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[2] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[3] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[4] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[5] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[6] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[7] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[8] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[9] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[10] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[11] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[12] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.
[13] Zi-Han GUO,Zhu-Bin HU,Zhen-Rong SUN,Hai-Tao SUN. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1171-1180.
[14] Lei HAN,Li PENG,Ling-Yun CAI,Xu-Ming ZHENG,Fu-Shan ZHANG. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1043-1050.
[15] Ai-Xi CHEN,Hong WANG,Sai DUAN,Hai-Ming ZHANG,Xin XU,Li-Feng CHI. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au (111) Surfaces[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1010-1016.