Please wait a minute...
Acta Physico-Chimica Sinica  2011, Vol. 27 Issue (02): 479-485    DOI: 10.3866/PKU.WHXB20110221
Influence of Electrolyte Concentration and Temperature on the Capacitance of Activated Carbon
TIAN Ying1,2, YAN Jing-Wang1, XUE Rong1, YI Bao-Lian1
1. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P. R. China;
2. College of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning Province, P. R. China
Download:   PDF(7316KB) Export: BibTeX | EndNote (RIS)      


The influences of electrolyte concentration and temperature on the capacitive behavior of activated carbon (AC) were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge measurements. The performance of a symmetric capacitor was characterized in 0.1, 0.5, 1.0, and 6.0 mol·L-1 KOH solution. We found that the high electrolyte concentration led to high capacitance, low internal resistance, and a narrow voltage window. The capacitance and internal resistance were found to be linearly dependent on the logarithm of KOH concentration. AC supercapacitor performance was investigated at 20, 40 and 80 °C, respectively. We found that elevated temperatures are favorable for an increase in capacitance and for a decrease in internal resistance. However, elevated temperatures increase the capacitance fading rate during long charge/discharge cycling tests.

Key wordsSupercapacitor      Activated carbon      Electrolyte concentration      Temperature     
Received: 24 August 2010      Published: 04 January 2011
MSC2000:  O646  

The project was supported by the Important Directional Project of ‘The Research and Exploration of Supercapacitor Storage System for Electric Vehicle’ from Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.

Corresponding Authors: YAN Jing-Wang     E-mail:
Cite this article:

TIAN Ying, YAN Jing-Wang, XUE Rong, YI Bao-Lian. Influence of Electrolyte Concentration and Temperature on the Capacitance of Activated Carbon. Acta Physico-Chimica Sinica, 2011, 27(02): 479-485.

URL:     OR

(1) Li, W.; Chen, D.; Li. Z.; Shi, Y.; Wan, Y.; Huang, J.; Yang, J.; Zhao, D.; Jiang, Z. Electrochem. Commun. 2007, 9, 569.
(2) Huang, J. S.; Sumpter, B. G.; Meunier, V. Chem. Eur. J. 2008, 14, 6614.
(3) Miller, J. R.; Simmon, P. Science 2008, 321, 651.
(4) Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simmon, P.; Taberna, P. L. Science 2006, 313, 1760.
(5) Wang, D. W.; Li, F.; Liu, M.; Cheng, H. M. New Carbon Mater. 2007, 22, 307.
(6) Hishihara, H.; Fukura, Y.; Inde, K.; Tsuji, K.; Takeuchi, M.; Kyatani, T. Carbon 2008, 46, 48.
(7) Sevilla, M.; Alvarez, S.; Centeno, T. A.; Fuetes, A. B.; Stoeckli, F. Electrochim. Acta 2007, 52, 3207.
(8) Fang, B.; Binder, L. J. Phys. Chem C 2006, 110, 7877.
(9) Masarapu, C.; Zeng, H. F.; Hung, K. H.; Wei, B. O. ACS Nano 2009, 3, 2199.
(10) Yuan, C. Z,; Zhang, X. G.; Wu, O. F.; Gao, B. Solid State Ion. 2006, 177, 1237.
(11) Kotz, R.; Hahn, M.; Gallay, R. J. Power Sources 2006, 154, 550.
(12) Hung, K.; Masarapu, C.; Ko, T.; Wei, B. J. Power Sources 2009, 193, 944.
(13) Liu, P.; Verbrugge, M.; Soukiazian, S. J. Power Sources 2006, 156, 712.
(14) Wang, D. W.; Li, F.; Chen, Z. G.; Lu, G. Q.; Cheng, M. M. Chem. Mater. 2008, 20, 7195.
(15) Ruiz, V.; Malmberg, H.; Blaco, C.; Lundblad, A.; Bjornbor1n, P.; Santamaria, R. J. Electroanal. Chem. 2008, 618, 33.
(16) Jurevicz, K.; Pietrzak, R.; Nowicki, P.; Wachowdka, H. Electrochim. Acta 2008, 53, 5469.
(17) Fuertes, A. B.; Lota, G.; Centeno, T. A.; Frackowiak, E. Electrochim. Acta 2005, 50, 2799.
(18) Brousse, T.; Toupin, M.; Belanger, D. J. Electrochem. Soc. 2004, 151, A614.
(19) Khomenko, V.; Raymundo-Pinew, E.; Beguin, F. J. Power Sources 2006, 153, 183.
(20) Xu, C.; Li. B.; Du. H.; Kang. F.; Zeng, Y. J. Power Sources, 2008, 184, 691.
(21) Azais, P.; Duclaux, L.; Florian, P.; Massiot, D.; Lillo-Rodenas, M. A.; Linares-Solano, A.; Peres, J. P.; Jehoulet, C.; Beguin, F. J. Power Sources 2007, 171, 1046.
(22) Briate, H. E.; Vinassa, J. M.; Henry, H.; Woirgarol, E. Microelectro. Reliab. 2009, 49, 1391.
(23) Fenandez, J. A.; Temmison, S.; Rubiera, F.; Stoedkli, F.; Centeno, T. A. Carbon 2009, 47, 1598.
(24) Zhao, J. C.; Lai, C. Y.; Dai, Y.; Xie, J. Y. Mater. Lett. 2007, 61, 4639.
(25) Xie, Y. B.; Yiao, W. M.; Zhang, W. Y.; Sun, G. W.; Ling, L. C. New Carbon Mater. 2010, 25, 248.
[谢立波, 乔文明, 张维燕, 孙刚成, 凌立成. 新型炭材料, 2010, 25, 248.]
(26) Wang, L. H.; Toyoda, M.; Inagaki, M. New Carbon Mater. 2008, 23, 111.
[王立红, 田昌宏, 稻埂道夫. 新型炭材料, 2008, 23, 111.]
(27) Liu, Y. F.; Hu, Z. H.; Xu, K.; Zheng, X. W.; Gao, Q. Acta Phys. -Chim. Sin. 2008, 23, 111
[刘亚菲, 胡中华, 许 琨, 郑祥伟, 高 强. 物理化学学报, 2008, 23, 111.]
(28) Zhuang, X. G.; Yang, Y. S.; Ji, Y. J.; Yang, D. P.; Tang, Z. Y. Acta Phys.-Chim. Sin. 2003, 19, 689.
[庄新国, 杨裕生, 嵇友菊, 杨冬平, 唐致远. 物理化学学报, 2003, 19, 689.]
(29) Zhu, M.; Webber, C. J.; Yang, Y.; Konuma, M.; Starke, U.; Kern, K.; Bittner, A. M. Carbon 2008, 46, 1829.

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinica, 2018, 34(1): 22-35.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1828-1837.
[3] HUANG Xue-Hui, SHANG Xiao-Hui, NIU Peng-Ju. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1462-1473.
[4] ZHAO Li-Ping, MENG Wei-Shuai, WANG Hong-Yu, QI Li. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Physico-Chimica Sinica, 2017, 33(4): 787-794.
[5] YAO Qian, PENG Li-Juan, LI Ze-Rong, LI Xiang-Yuan. Accurate Calculation of the Energy Barriers and Rate Constants of Hydrogen Abstraction from Alkanes by Hydroperoxyl Radical[J]. Acta Physico-Chimica Sinica, 2017, 33(4): 763-768.
[6] GUO Rui, ZHANG Jialin, ZHAO Songtao, YU Xiaojiang, ZHONG Shu, SUN Shuo, LI Zhenyu, CHEN Wei. LT-STM Investigation of the Self-Assembled F16CuPc-Corannulene Binary System on Ag(111) and Grap[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 627-632.
[7] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 329-343.
[8] YIN Jin-Ling, LIU Jia, WEN Qing, WANG Gui-Ling, CAO Dian-Xue. Phosphomolybdic Acid as a Mediator for Indirect Carbon Electrooxidation in LowTemperature Carbon Fuel Cell[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 370-376.
[9] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 305-313.
[10] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2510-2516.
[11] LI Dao-Yan, ZHANG Ji-Chen, WANG Zhi-Yong, JIN Xian-Bo. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2245-2252.
[12] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2013-2021.
[13] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 1944-1959.
[14] LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, HAO Chang-Long, LU Chen-Guang, ZHU Yi-Hua, TANG Zhi-Yong. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 130-148.
[15] ZHANG Wei-Feng, XIAN Lei-Yong, YONG Kang-Le, HE Jiu-Ning, ZHANG Chang-Hua, LI Ping, LI Xiang-Yuan. A Shock Tube Study of n-Undecane/Air Ignition Delays over a Wide Range of Temperatures[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2216-2222.