Please wait a minute...
Acta Physico-Chimica Sinica  2011, Vol. 27 Issue (02): 369-373    DOI: 10.3866/PKU.WHXB20110224
Effects of Vacancy and Boron Doping on Si Adsorption on Graphene
DAI Xian-Qi1,2, LI Yan-Hui1, ZHAO Jian-Hua1, TANG Ya-Nan1
1. College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007, Henan Province, P. R. China;
2. Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007, Henan Province, P. R. China
Download:   PDF(2002KB) Export: BibTeX | EndNote (RIS)      


First-principles calculations based on density functional theory were carried out to study the effects of monovacancy and boron doping on Si adsorption on graphene. We found that Si single atom, sitting above the bridge site of defect-free graphene, was the most stable configuration. The spin properties of the C atoms change after Si adsorption. In our calculations, monovacancy and substituting with B atoms enhanced Si adsorption on graphene and monovacancy was more effective than the B dopant. No magnetic moment was observed for the Si adsorbed on these two systems. B doping induces a stable Si adsorption position from the bridge site to the top site and increases the conductivity of the graphene system. By comparison, B doping in the graphene system is relatively stable while the monovacancy system is not.

Key wordsGraphene      Vacancy defect      Boron doping      Adsorption      Si      First-principles     
Received: 19 August 2010      Published: 05 January 2011
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (60476047) and Program for Science and Technology Innovation Talents in Universities of Henan Province, China (2008HASTIT030).

Corresponding Authors: DAI Xian-Qi     E-mail:
Cite this article:

DAI Xian-Qi, LI Yan-Hui, ZHAO Jian-Hua, TANG Ya-Nan. Effects of Vacancy and Boron Doping on Si Adsorption on Graphene. Acta Physico-Chimica Sinica, 2011, 27(02): 369-373.

URL:     OR

(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I.; Firsov, A. Science 2004, 306, 666.
(2) Pandey, D.; Reifenberger, R.; Piner, R. Surface Science 2008, 602, 1607.
(3) Garcia-Sanchez, D.; Van Der Zande, A. M.; Paulo, A. S.; Lassagne, B.; McEuen, P. L.; Bachtold, A. Nano Letters 2008, 8, 1399.
(4) Moser, J.; Verdaguer, A.; Jim¨|nez, D.; Barreiro, A.; Bachtold, A. Applied Physics Letters 2009, 92, 123507.
(5) Morozov, S. V.; Novoselov, K. S.; Schedin, F.; Jiang, D.; Firsov, A. A.; Geim, A. K. Physical Review B 2005, 72, 201401.
(6) Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; Van den Brink, J.; Kelly, P. J. Physical Rreview Letters 2008, 101, 26803.
(7) Chan, K. T.; Neaton, J. B.; Cohen, M. L. Physical Review B 2008, 77, 235430.
(8) Sevin li, H.; Topsakal, M.; Durgun, E.; Ciraci, S. Physical Review B 2008, 77, 195434.
(9) Zhou, Y. G.; Zu, X. T.; Gao, F.; Xiao, H. Y.; Lv, H. F. Journal of Applied Physics 2009, 105, 104311.
(10) Zhou, Y. G.; Zu, X. T.; Gao, F.; Lv, H. F.; Xiao, H. Y. Applied Physics Letters 2009, 95, 123119.
(11) Wu, M.; Liu, E. Z.; Jiang, J. Z. Applied Physics Letters 2008, 93, 082504.
(12) Lherbier, A.; Blase, X.; Niquet, Y. M.; Triozon, F.; Roche, S. Physical Review Letters 2008, 101, 36808.
(13) Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Nano Letters 2009, 9, 1752.
(14) Denis, P. A.; Faccio, R.; Mombru, A. W. ChemPhysChem 2009, 10, 715.
(15) Chi, M.; Zhao, Y. P. Computational Materials Science 2009, 46, 1085.
(16) Endo, M.; Hayashi, T.; Hong, S. H.; Enoki, T.; Dresselhaus, M. S. Journal of Applied Physics 2001, 90, 5670.
(17) Woodside, M. T.; McEuen, P. L. Science 2002, 296, 1098.
(18) Meunier, V.; Kephart, J.; Roland, C.; Bernholc, J. Physical Review Letters 2002, 88, 75506.
(19) Zhang, Y. H.; Zhou, K. G.; Gou, X. C.; Xie, K. F.; Zhang, H. L.; Peng, Y. Chemical Physics Letters 2010, 484, 266.
(20) Colussi, M. L.; Neves, L. P.; Baierle, R. J. Brazilian Journal of Physics 2006, 36, 886.
(21) Silva, L. B.; Fagan, S. B.; Mota, R.; Fazzio, A. Nanotechnology 2006, 17, 4088.
(22) Aktürk, E.; Ataca, C.; Ciraci, S. Applied Physics Letters 2010, 96, 123112.
(23) Rossato, J.; Baierle, R. J.; Fazzio, A.; Mota, R. Nano Letters 2005, 5, 197.
(24) Kresse, G.; Hafner, J. Journal of Physics: Condensed Matter 1994, 6, 8245.
(25) Perdew, J. P.; Burke, K.; Ernzerhof, M. Physical Review Letters 1996, 77, 3865.
(26) Chen, L. J.; Hou, Z. F. Acta Phys. Sin. 2003, 52
[陈丽娟; 侯锋; 朱梓忠; 杨 勇. 物理学报 2003, 52.]
(27) Yamashita, K.; Saito, M.; Oda, T. Japanese Journal of Applied Physics 2006, 45, 6534.
(28) Pereira, V. M.; Guinea, F.; Lopes dos Santos, J. M. B.; Peres, N. M. R.; Castro Neto, A. H. Physical review letters 2006, 96, 36801.
(29) Liu, H. Y.; Hou, Z. F.; Zhu, Z. F.; Huang, M. C.; Yang, Y. Chem. J. Chin. Univ., 2004, 8, 1521
[刘慧英; 侯铎柱; 朱梓忠; 黄纯; 杨 勇. 高等学校化学学报, 2004, 8, 1521.]
(30) Decker, B. F.; Kasper, J. S. Acta Crystallographica 1959, 12, 503.
(31) Zhou, Z.; Gao, X.; Yan, J.; Song, D. Carbon 2006, 44, 939.
(32) Miwa, R. H.; Martins, T. B.; Fazzio, A. Nanotechnology 2008, 19, 155708.

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 256-262.
[3] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 286-295.
[4] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 263-269.
[5] JIANG Xiaoyu, WU Wei, MO Yirong. Strength of Intramolecular Hydrogen Bonds[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 278-285.
[6] FANG Lei, SUN Mingjun, CAO Xinrui, CAO Zexing. Mechanical and Optical Properties of a Novel Diamond-like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor:a First-Principles Study[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 296-302.
[7] LIANG Sisi, SHANG Mengmeng, LIN Jun. Single-Component Luminescent Materials Activated with Mixed-Valence Eu(+2, +3):Designed Synthesis, Luminescent Properties and Mechanisms[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 237-246.
[8] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 303-313.
[9] DING Xiaoqin, DING Junjie, LI Dayu, PAN Li, PEI Chengxin. Toxicity Prediction of Organoph Osphorus Chemical Reactivity Compounds Based on Conceptual DFT[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 314-322.
[10] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Physico-Chimica Sinica, 2018, 34(2): 168-176.
[11] CHENG Fang, LI Mingyang, HE Wei, WANG Hanqi. Control of the Ligand Surface Density through Reaction Kinetics of Amino and Surface Vinyl Sulfone Groups[J]. Acta Physico-Chimica Sinica, 2018, 34(2): 177-184.
[12] GHARA Manas, CHATTARAJ Pratim K. Bonding and Reactivity in RB-AsR Systems (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO):Substituent Effects[J]. Acta Physico-Chimica Sinica, 2018, 34(2): 201-207.
[13] GONG Linji, XIE Jiani, ZHU Shuang, GU Zhanjun, ZHAO Yuliang. Application of Multifunctional Nanomaterials in Tumor Radiosensitization[J]. Acta Physico-Chimica Sinica, 2018, 34(2): 140-167.
[14] CEDILLO Andrés, CORTONA Pietro. Effect of Pressure on Cesium Iodide Band Gap[J]. Acta Physico-Chimica Sinica, 2018, 34(2): 208-212.
[15] SONG Xue-Jiao, LIU Zhuang. Applications of Nanotechnology for Physical Stimulus-Responsive Cancer Therapies[J]. Acta Physico-Chimica Sinica, 2018, 34(2): 123-139.