Please wait a minute...
Acta Phys. -Chim. Sin.  2011, Vol. 27 Issue (02): 329-336    DOI: 10.3866/PKU.WHXB20110226
Reaction Mechanisms of CO Oxidation Catalyzed by Binary Copper Group Cluster Anions
HU Jian-Ping1, WANG Jun2, TANG Dian-Yong1, FU Qin-Chao1, ZHANG Yuan-Qin1
1. Molecular Design Center, College of Chemistry and Life Science, Leshan Normal University, Leshan 614000, Sichuan Province, P. R. China;
2. Neurology Department, Chengdu Military General Hospital, Chengdu 610083, P. R. China
Download:   PDF(3427KB) Export: BibTeX | EndNote (RIS)      


The detailed mechanisms of CO oxidation catalyzed by AuAg-, AuCu-, and AgCu- were investigated using density functional theory at the B3LYP level. The computational results indicate that the adsorption site of CO onto the mixed clusters decreases as follows: Cu>Au>Ag. Copper is the preferred adsorption site for O2 on the binary clusters. The adsorption of O2 onto gold was found to be the weakest. Three reaction pathways exist for CO oxidation catalyzed by AuAg-, AuCu-, and AgCu-. The most feasible pathway for CO oxidation catalyzed by AuAg- is CO insertion into the Ag―O bond of AuAgO2- to produce the [Au―AgC(O―O)O]- intermediate, which then decomposes into CO2 and AuAgO-, or another CO molecule attacks [Au―AgC(O―O)O]- to form two CO2 molecules and AuAg- anion. A feasible pathway for CO oxidation catalyzed by AuCu- or AgCu- is initiated by the co-absorption of CO and O2 onto the clusters followed by the formation of a four-membered ring intermediate to produce the corresponding products. The cooperation effect of the second CO is very weak. The catalytic activities of AuAg- and AuCu- toward CO oxidation are stronger than that of Au2- . Doping the Au clusters with Ag and Cu increases the catalytic activity. These results are in agreement with the previous experimental results.

Key wordsDensity functional theory      CO oxidation      Binary copper group cluster anion      Reaction mechanism     
Received: 25 August 2010      Published: 05 January 2011
MSC2000:  O641  

The project was supported by the Key Project of Chinese Ministry of Education (210189), Science and Technology Bureau of Sichuan Province, China (2008JY0119), and Education Bureau of Sichuan Province, China (07ZA158).

Corresponding Authors: TANG Dian-Yong     E-mail:
Cite this article:

HU Jian-Ping, WANG Jun, TANG Dian-Yong, FU Qin-Chao, ZHANG Yuan-Qin. Reaction Mechanisms of CO Oxidation Catalyzed by Binary Copper Group Cluster Anions. Acta Phys. -Chim. Sin., 2011, 27(02): 329-336.

URL:     OR

1 Min, B. K.; Friend, C. M. Chem. Rev. 2007, 107, 2709, and references therein.
2 Zhang, X.; Xu, B. Q. Acta Chim. Sin. 2005, 63, 86.
[张 鑫, 徐柏庆. 化学学报, 2005, 63, 86.]
3 Shao, J. J.; Zhang, P.; Song, W.; Huang, X. M.; Xu, Y. D.; Shen, W. J. Acta Chim. Sin. 2007, 65, 2007.
[邵建军, 张 平, 宋 巍, 黄秀敏, 徐奕德, 申文杰. 化学学报, 2007, 65, 2007.]
4 Chen, M.; Goodman, D. W. Acc. Chem. Res. 2006, 39, 739.
5 Bowker, M. Chem. Soc. Rev. 2008, 37, 2204.
6 Campbell, C. T. Science 2004, 306, 234.
7 Reveles, J. U.; Johnson,G. E.; Khanna, S. N.; Castleman, A. W., Jr. J. Phys. Chem. C 2010, 114, 5438.
8 Xue, W.; Wang, Z. C.; He, S. G.; Xie, Y.; Bernstein, E. R. J. Am. Chem. Soc. 2008, 130, 15879.
9 Wang, A. Q.; Liu, J. H.; Lin, S. D.; Lin, T. S.; Mou, C. Y. J. Catal. 2005, 233, 186.
10 Wang, A. Q.; Chang, C. M.; Mou, C. Y. J. Phys. Chem. B 2005, 109, 18860.
11 Liu, X.; Wang, A. Q.; Wang, X.; Mou, C. Y.; Zhang, T. Chem. Commun. 2008, No. 27, 3187.
12 Yen, C. W.; Lin, M. L.; Wang, A.; Chen, S. A.; Chen, J. M.; Mou, C. Y. J. Phys. Chem. C 2009, 113, 17831.
13 Wang, A. Q.; Hsieh, Y. P.; Chen, Y. F.; Mou, C. Y. J. Catal. 2006, 237, 197.
14 Liu, J. H.; Wang, A. Q.; Chi, Y. S.; Lin, H. P.; Mou, C. Y. J. Phys. Chem. B 2005, 109, 40.
15 Liu, X.; Wang, A. Q.; Yang, X. F.; Zhang, T.; Mou, C. Y.; Su, D. S.; Li, J. J. Chem. Mater. 2009, 21, 410.
16 Wittstock, A.; Neumann, B.; Schaefer, A.; Dumbuya, K.; Kübel, C.; Biener, M. M.; Zielasek, V.; Steinrück, H. P.; Gottfried, J. M.; Biener, J.; Hamza, A.; B?umer, M. J. Phys. Chem. C 2009, 113, 5593.
17 Bernhardt, T. M.; Socaciu-Siebert, L. D.; Hagen, J.; Wöste, L. Appl. Catal. A-Gen. 2005, 291, 170.
18 Mitri?, R.; Burda, J.; Bona?i?-Koutecký, V.; Fantucci, P. Euro. Phys. J. D 2003, 24, 41.
19 Chang, C. M.; Cheng, C.; Wei, C. M. J. Chem. Phys. 2008, 128, 124710.
20 Gao, Y.; Shao, N.; Pei, Y.; Zeng, X. C. Nano Lett. 2010, 10, 1055.
21 Kimble, M. L.; Moore, N. A.; Johnson, G. E.; Castleman, A. W. J. Chem. Phys. 2006, 125, 204311.
22 Tang, D. Y.; Zhang, Y. Q.; Hu, C. W. Acta Chim. Sin. 2008, 66, 1501.
[唐典勇, 张元勤, 胡常伟. 化学学报, 2008, 66, 1501.]
23 Tang, D. Y.; Hu, J. P., Zhang, Y. Q., Hu, C. W. Acta Chim. Sin. 2009, 67, 1859.
[唐典勇, 胡建平, 张元勤, 胡常伟. 化学学报, 2009, 67, 1859.]
24 Dholabhai, P. P.; Wu, X.; Ray, A. K. J. Mol. Struct.-Theochem 2005, 723, 139.
25 Tang, D. Y.; Hu, J. P.; Zhang, Y. Q.; Hu, C. W. Acta Chim. Sin. 2010, 68, 1379.
[唐典勇, 胡建平, 张元勤, 胡常伟. 化学学报, 2010, 68, 1379.]
26 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision E.01; Gaussian Inc.: Pittsburgh, PA, 2004.
27 Couty, M.; Hall, M. B. J. Comput. Chem. 1996, 17, 1359.
28 Ehlers, A. W.; Dapprich, B. S.; Gobbi, A.; Hollwarth, A.; Jonas, V.; Kohler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111.
29 Ojifinni, R. A.; Gong, J.; Froemming, N. S.; Flaherty, D. W.; Pan, M.; Henkelman, G.; Mullins, C. B. J. Am. Chem. Soc. 2008, 130, 11250.
30 Wang, F.; Zhang, D.; Xu, X.; Ding, Y. J. Phys. Chem. C 2009, 113, 18032.

[1] Bihua CHEN,H. M. ELAGEED Elnazeer,Yongya ZHANG,Guohua GAO. BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 952-958.
[2] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[3] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[4] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[5] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[6] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[7] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[8] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[9] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[10] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[11] Chunxing REN,Xiaoxia LI,Li GUO. Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1151-1162.
[12] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[13] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[14] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.
[15] Xue-Hui HUANG,Xiao-Hui SHANG,Peng-Ju NIU. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1462-1473.