Please wait a minute...
Acta Physico-Chimica Sinica  2011, Vol. 27 Issue (02): 505-512    DOI: 10.3866/PKU.WHXB20110230
Effects of Rare Earth Ce Doping on the Structure and Photocatalytic Performance of ZnO
YU Chang-Lin1, YANG Kai1, YU Jimmy C2, PENG Peng1, CAO Fang-Fang1, LI Xin1, ZHOU Xiao-Chun1
1. School of Materials and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China;
2. Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P. R. China
Download:   PDF(3743KB) Export: BibTeX | EndNote (RIS)      


A series of ZnO photocatalysts doped with different amounts of cerium were prepared by co-precipitation and then calcined at different temperatures. The prepared pure ZnO and Ce-doped ZnO samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), UV-visible (UV-Vis) spectroscopy, and photoluminescence (PL) spectroscopy. The photocatalytic activity of the samples was evaluated by the photodegradation of acid orange II under UV light (λ=365 nm) irradiation. FT-IR results showed that ZnO doped with 2% (w, mass fraction) cerium had far more OH groups over the surface of the doped sample than the pure ZnO. At the same time, PL tests indicated that the presence of 2% (w) cerium effectively suppressed the recombination of the photogenerated hole-electron pairs. On the other hand, the calcination temperatures influenced the crystallinity and crystal size of the catalysts. XRD tests indicated that the sample calcined at 500 °C had good crystallinity and a small crystal size while elevated temperature treatment (600-800 °C) would result in sintering and increase the crystal size. At the optimal calcination temperature of 500 °C and at 2% (w) cerium doping the composite photocatalyst had much higher photocatalytic activity and stability compared with pure ZnO. The high photocatalytic performance of the Ce doped ZnO could be attributed to an increase in surface OH groups, high crystallinity and a low recombination rate of electron/hole (e-/h+) pairs.

Key wordsCerium doping      Zinc oxide      Calcination      Photocatalysis      OH group      Acid orange II     
Received: 21 October 2010      Published: 07 January 2011
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (21067004), Open Project Program of State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University), China (200906), Research Foundation of Education Bureau of Jiangxi Province, China (GJJ10150), and Natural Science Foundation of Jiangxi Province, China (2010GZH0048).

Corresponding Authors: YU Chang-Lin     E-mail:
Cite this article:

YU Chang-Lin, YANG Kai, YU Jimmy C, PENG Peng, CAO Fang-Fang, LI Xin, ZHOU Xiao-Chun. Effects of Rare Earth Ce Doping on the Structure and Photocatalytic Performance of ZnO. Acta Physico-Chimica Sinica, 2011, 27(02): 505-512.

URL:     OR

(1) Zhou, Z. G. Funct. Mater. Info. 2008, 4, 17.
[邹志刚. 功能材料信息, 2008, 4, 17.]
(2) Yu, C. L.; Zhou, W. Q.; Yang, K.; Rong, G. J. Mater. Sci. 2010, 45, 5756.
(3) Yu, C. L.; Yu, J. M. Mater. Sci. Eng. B 2009, 164, 16.
(4) Wen, F. Y.; Yang, J. H.; Zong, X.; Ma, Y. Prog. Chem. 2009, 21, 2285.
[温福宇, 杨金辉, 宗旭, 马艺. 化学进展, 2009, 21: 2285.]
(5) Yu, C. L.; Yu, J. M. Catal. Lett. 2010, 140, 172.
(6) Zhang, J.; Xu, Q.; Feng, Z. C.; Li, M. J.; Li, C. Angew. Chem. Int. Edit. 2008, 47, 1766.
(7) Li, Y. X.; Hu, Y. F.; Peng, S, Q.; Lu, G. X.; Li, S. B. J. Phys. Chem. C 2009, 113, 9352.
(8) Yu, C. L.; Fan, C. F.; Yu, J. M. Mater. Res. Bull. 2011, 46, 140.
(9) Yu, J. G.; Xiang, Q. J.; Zhou, M. H. Appl. Catal. B 2009, 90, 595.
(10) Yu, C. L.; Yu, J. M. J. Phys. Chem. Solids 2010, 71, 1337.
(11) Yu, C. L.; Yu, J. M.; Chan, M. J. Solid State Chem. 2009, 182, 1061.
(12) Yu, C. L.; Yu, J. M. Catal. Lett. 2009, 129, 462.
(13) Zhang, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. J. Phys. Chem. C 2008, 112, 747.
(14) Li, C. Q.; Luo, L. T.; Xiong, G. W. Chin. J. Catal. 2009, 30, 1058.
[李长全, 罗来涛, 熊光伟. 催化学报, 2009, 30, 1058.]
(15) Xu, B.; Wang, S. L. Chin. Funct. Mater. 2010, 41, 307.
[徐波, 王树林. 功能材料, 2010, 41, 307.]
(16) Li, Y. X.; Wang, T. H.; Peng, S. Q.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2004, 20, 1434.
[李越湘, 王添辉, 彭绍琴, 吕功煊, 李树本. 物理化学学报, 2004, 20, 1434.]
(17) Xu, P. C.; Liu, Y.; Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261.
[许平昌, 柳阳, 魏建红, 熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.]
(18) Yu, C. L.; Yu, J. M. Mater. Sci. Eng. B 2010, 166, 213.
(19) Lin, J.; Yu, J. M. J. Photochem. Photobiol. A 1998, 16, 63.
(20) Yu, J. G.; Yu, H. G.; Ao, C. H.; Lee, S. C.; Yu, J. C.; Ho, W. K. Thin Solid Films, 2006, 496, 273.
(21) Fu, T. H.; Gao, Q. Q.; Liu, F.; Dai, H, J.; Kou, X. M. Chin. J. Catal. 2010, 31, 797.
[傅天华, 高倩倩,刘斐, 代华均, 寇兴明. 催化学报, 2010, 31, 797.]
(22) Deng, Q. Y.; Liu, L.; Deng, H. M. Spectrum Analysis Tutorial; Science Press: Beijing, 2002; p68.
[邓芹英, 刘岚, 邓惠敏. 波谱分析教程. 北京: 科学出版社, 2003: 68.]
(23) McDevitt, N. T.; Baun, W. L. Spectrochimica. Acta 1964, 20, 799.
(24) Zhao, Z. C.; Liu, L. L. J. Bohai. Univ (Nat. Sci.) 2009, 30, 317.
[赵志成, 刘连利. 渤海大学学报: 自然科学版, 2009, 30, 317.]
(25) Gao, L.; Zheng, S.; Zhang, Q, H. Nano TiO2 Photocatalytic Materials and Its Application; Chemical Industry Press: Beijing, 2002; pp 110-111.
[高濂, 郑珊, 张青红. 纳米氧化钛光催化材料及应用. 北京: 化学工业出版社, 2002: 110-111.]
(26) Jia, T. K.; Wang, W. M.; Huang, F.; Fu, Z. Y.; Ma, X. H.; Guo, W. Rare Metal Mat. Eng. 2009, 38, 979.
[贾铁昆, 王为民, 黄飞,傅正义, 马秀华, 郭伟. 稀有金属材料与工程, 2009, 38, 979.]
(27) Yang, Y. Q.; Du, G. H.; Ding, W.; Li, J.; Li, T. B.; Xu, B. S. Chin. J. Inorg. Chem. 2010, 26, 300.
[杨永强, 杜高辉, 丁伟, 李洁, 李天宝, 许并社. 无机化学学报, 2010, 26, 300.]
(28) Park, K. C.; Ma, D. Y.; Kim, K. H. Thin Solid Films 1997, 305, 201.
(29) Su, S.; Lu, S. X.; Xu, W. G. Chin. J. Process. Eng. 2008, 8, 54.
[苏苏, 卢士香, 徐文国. 过程工程学报, 2008, 8, 54.]
(30) Herrmann, J. M.; Ahiri, H.; Ait-Ichou, Y.; Lassaletta, G.; Gonzalez-Elipe, A. R.; Fernandez, A. Appl. Catal. B 1997, 13, 219.
(31) Lin, X. P.; Huang, T.; Huang, F. Q.; Wang, W. D.; Shi, J. L. J. Phys. Chem. B 2006, 110, 24629.

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1436-1445.
[2] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 590-601.
[3] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 399-406.
[4] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2072-2081.
[5] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2082-2091.
[6] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 80-102.
[7] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2185-2196.
[8] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 2069-2076.
[9] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 2077-2083.
[10] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1758-1764.
[11] ZHU Kai-Jian, YAO Wen-Qing, ZHU Yong-Fa. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Physico-Chimica Sinica, 2016, 32(6): 1519-1526.
[12] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Physico-Chimica Sinica, 2016, 32(3): 728-736.
[13] HU Li-Fang, HE Jie, LIU Yuan, ZHAO Yun-Lei, CHEN Kai. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Physico-Chimica Sinica, 2016, 32(3): 737-744.
[14] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 551-557.
[15] HE Rong-An, CAO Shao-Wen, YU Jia-Guo. Recent Advances in Morphology Control and Surface Modification of Bi-Based Photocatalysts[J]. Acta Physico-Chimica Sinica, 2016, 32(12): 2841-2870.