Please wait a minute...
Acta Physico-Chimica Sinica  2011, Vol. 27 Issue (02): 437-442    DOI: 10.3866/PKU.WHXB20110239
ELECTROCHEMISTRY AND NEW ENERGY     
Effect of Calcination Atmosphere on Li/Ni Disorder and Electrochemical Performance of Layered LiNi0.5Mn0.5O2
WANG Xiao-Ya, CHENG Qian, HUANG Tao, YU Ai-Shui
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai 200438, P. R. China
Download:   PDF(6974KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Layered LiNi0.5Mn0.5O2 was synthesized by a solid state reaction method under air or oxygen atmosphere. The obtained materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS), and charge-discharge tests. The results show that the LiNi0.5Mn0.5O2 synthesized by the solid state reaction method under both air and oxygen atmospheres give a pure phase and good crystallinity, however, their electrochemical performance differs. The material synthesized under oxygen gives better electrochemical performance including a higher first discharge capacity and better cycle stability. At a rate of 0.1C the first discharge capacity of the material synthesized under oxygen was found to be 178 mAh·g-1. After 50 charge and discharge cycles the discharge capacity was still 165 mAh·g-1 giving a capacity retention rate of 92.7%. For the material synthesized under air, the first discharge capacity at a rate of 0.1C was found to be 164 mAh·g-1. After 50 charge and discharge cycles, the discharge capacity was 137 mAh·g-1 giving a capacity retention rate of 83.5%. The reason for the material synthesized under oxygen having better electrochemical performance than the material synthesized under air is due to the oxygen atmosphere suppressing the Li/Ni exchange ratio in LiNi0.5Mn0.5O2.



Key wordsLithium ion battery      Cathode material, LiNi0.5Mn0.5O2      Li/Ni exchange      Calcination atmosphere     
Received: 23 October 2010      Published: 13 January 2011
MSC2000:  O646  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2009CB220100), National High Technology Research and Development Program of China (863) (2009AA033701), and Science & Technology Commission of Shanghai Municipality, China (08DZ2270500).

Corresponding Authors: Yu Ai-Shui     E-mail: asyu@fudan.edu.cn
Cite this article:

WANG Xiao-Ya, CHENG Qian, HUANG Tao, YU Ai-Shui. Effect of Calcination Atmosphere on Li/Ni Disorder and Electrochemical Performance of Layered LiNi0.5Mn0.5O2. Acta Physico-Chimica Sinica, 2011, 27(02): 437-442.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20110239     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I02/437

(1) Scrosati, B. Electrochim. Acta 2000, 45, 2461.
(2) Ohzuku, T.; Makimura, Y. Chem. Lett. 2001, 8, 744.
(3) Sun, Y. K.; Bae, Y. C.; Myung, S. T. J. Appl. Electrochem. 2005, 35, 151.
(4) Zhou, Y. K.; Li, H. L. J. Mater. Chem. 2002, 12, 681.
(5) Kang, K. S.; Meng, Y. S.; Breger, J.; Grey, C. P.; Ceder, G. Science 2006, 311, 977.
(6) Ariyoshi, K.; Tomohiro, I.; Ohzuku, T. J. Phys. Chem. Solids 2008, 69, 1238.
(7) Kang, S. H.; Park, S. H.; Johnson, C. S.; Amine, K. J. Electrochem. Soc. 2007, 154, A268.
(8) Abdel, G. A.; Zaghib, K.; Gendron. F.; Mauger. A.; Julien, C. M. Electrochim. Acta 2007, 52, 4092.
(9) Yabuuchi, N.; Kumar, S.; Li, H. H.; Kim, Y. T. J. Electrochem. Soc. 2007, 154, A566.
(10) Islam, M. S.; Davies, R. A.; Gale, J. D. Chem. Mater. 2003, 22, 4280.
(11) Wu, Q.; Lu, X. Y.; Yan, M. M.; Jiang, Z. Y. Electrochem. Commun. 2003, 10, 878.
(12) Sun, Y. K.; Myung, S. T.; Kim, M. H.; Prakash, J.; Amine, K. J. Am. Chem. Soc. 2005, 38, 13411.
(13) Hwang, B. J.; Yu, T. H.; Cheng, M. Y., Santhanam, R. J. Mater. Chem. 2009, 19, 4536.
(14) Hinuma, Y.; Meng, Y. S.; Kang, K.; Ceder, G. Chem. Mater. 2007, 19, 1790.
(15) Yoshio, M.; Todorov, Y.; Yamato, K.; Noguchi, H.; Itoh, M. J.; Okada, M. T. J. Power Sources 1998, 74, 46.
(16) Park, S. H.; Sun, Y. K. Electrochim. Acta 2004, 50, 431.
(17) Ammundsen, B.; Paulsen, J. Adv. Mater. 2001, 13, 943.
(18) Makimura, Y.; Ohzuku, T. Journal of Power Sources 2003, 119-121, 156.
(19) Lu, Z. H.; Beaulieu, L. Y.; Donaberger, R. A.; Thomas, C. L.; Dahn, J. R. Journal of the Electrochemical Society 2002, 149, 778.
(20) Whittingham, M. S. Chem. Rev. 2004, 104, 4271.
(21) Lu, Z. H.; MacNeil, D. D.; Dahn, J. R. Electrochemical and Solid-State Letters 2001, 4, 200.
(22) Zhong, H.; Xu, H. Acta. Chim. Sin. 2004, 62, 1123.
[钟 辉, 许 惠. 化学学报, 2004, 62, 1123.]
(23) Lian, F.; Axmann, P.; Stinner, C.; Liu, Q. G.; Wohlfahrt, M. M. J. Appl. Electrochem. 2008, 38, 613.
(24) Liu, J. L.; Jiang, R. R.; Wang, X. Y.; Huang, T.; Yu, A. S. J. Power Sources 2009, 194, 536.
(25) Gao, F.; Tang, Z. Y. Electrochim. Acta 2008, 53, 5071.
(26) Liao, X. Z.; Ma, Z. F.; Qiang, G.; He, Y. S.; Li, P.; Zeng, L. J. Electrochem. Commun. 2008, 10, 691.

[1] LI Wan-Long, LI Yue-Jiao, CAO Mei-Ling, QU Wei, QU Wen-Jie, CHEN Shi, CHEN Ren-Jie, WU Feng. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2261-2267.
[2] LI Ya-Dong, DENG Yu-Feng, PAN Zhi-Yi, WEI Yin-Ping, ZHAO Shi-Xi, GAN Lin. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2293-2300.
[3] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2287-2292.
[4] LI Ting, LONG Zhi-Hui, ZHANG Dao-Hong. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 573-580.
[5] ZHU Shou-Pu, WU Tian, SU Hai-Ming, QU Shan-Shan, XIE Yong-Juan, CHEN Ming, DIAO Guo-Wang. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(11): 2737-2744.
[6] WANG Qian-Wen, DU Xian-Feng, CHEN Xi-Zi, XU You-Long. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, 2015, 31(8): 1437-1451.
[7] ZENG Yu-Qun, GUO Yong-Sheng, WU Bing-Bin, HONG Xiang, WU Kai ZHONG, Kai-Fu. Synthesis and Electrochemical Performance of Plastic Crystal Compound-Based Ionic Liquid[J]. Acta Physico-Chimica Sinica, 2015, 31(7): 1351-1358.
[8] XUE Qing-Rui, LI Jian-Ling, XU Guo-Feng, HOU Peng-Fei, YAN Gang, DAI Yu, WANG Xin-Dong, GAO Fei. Effects of Surface Modification with Ag/C on Electrochemical Properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2[J]. Acta Physico-Chimica Sinica, 2014, 30(9): 1667-1673.
[9] ZHU Zhi, QI Lu, LI Wei, LIAO Xi-Ying. Preparation and Electrochemical Performance of 5 V LiNi0.5Mn1.5O4 Cathode Material by the Composite Co-Precipitation Method for High Energy/High Power Lithium Ion Secondary Batteries[J]. Acta Physico-Chimica Sinica, 2014, 30(4): 669-676.
[10] WU Yue, LIU Xing-Quan, ZHANG Zheng, ZHAO Hong-Yuan. Preparation and Characterization of M(Ⅱ) and M(Ⅳ) Iso-Molar Co-Doped LiMn1.9Mg0.05Ti0.05O4 Cathode Materials for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2014, 30(12): 2283-2290.
[11] ZHONG Yan-Jun, LI Jun-Tao, WU Zhen-Guo, ZHONG Ben-He, GUO Xiao-Dong, HUANG Ling, SUN Shi-Gang. Synthesis of Na2MnPO4F/C with Different Carbon Sources and Their Performances as Cathode for Lithium Ion Battery[J]. Acta Physico-Chimica Sinica, 2013, 29(09): 1989-1997.
[12] LIU Nian-Ping, SHEN Jun, GUAN Da-Yong, LIU Dong, ZHOU Xiao-Wei, LI Ya-Jie. Effect of Carbon Aerogel Activation on Electrode Lithium Insertion Performance[J]. Acta Physico-Chimica Sinica, 2013, 29(05): 966-972.
[13] YUAN Zhi-Hong, MA Jun, CHEN Xing, LIU Kai-Yu. P123-Assisted Rheological Phase Reaction Synthesis and Electrochemical Performance of Li3V2(PO4)3/C Cathode[J]. Acta Physico-Chimica Sinica, 2012, 28(12): 2898-2904.
[14] LU Huai-Qian, SHI Lei, HE Chong, WENG Wei-Zheng, HUANG Chuan-Jing, WAN Hui-Lin. Highly-Dispersed NiO Nanoparticles on SBA-15 for Oxidative Dehydrogenation of Propane to Propylene[J]. Acta Physico-Chimica Sinica, 2012, 28(11): 2697-2704.
[15] LI Jie-Bin, XU You-Long, DU Xian-Feng, SUN Xiao-Fei, XIONG Li-Long. Improved Electrochemical Stability of Zn-Doped LiNi1/3Co1/3Mn1/3O2 Cathode Materials[J]. Acta Physico-Chimica Sinica, 2012, 28(08): 1899-1905.