Please wait a minute...
Acta Phys. -Chim. Sin.  2011, Vol. 27 Issue (03): 736-742    DOI: 10.3866/PKU.WHXB20110320
PHYSICAL CHEMISTRY OF MATERIALS     
Synthesis and Structural Characterization of Graphene-Based Membranes
YANG Yong-Hui1, SUN Hong-Juan2, PENG Tong-Jiang2, HUANG Qiao1
1. College of Science, Southwest University of Science and Technology, Mianyang 621010, Sichuan Province, P. R. China;
2. Institute of Mineral Materials & Application, Southwest University of Science and Technology, Mianyang 621010, Sichuan Province, P. R. China
Download:   PDF(655KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A stable hydrosol of graphene was synthesized by oxidation reduction and then a flow assembly of this graphene was used to form a graphene-based membrane by vacuum extraction filtering method. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, particle size analysis, and scanning probe microscopy (SPM) were used to characterize the crystal structure, granularity, and characteristic change of the molecular spectrum of the samples in the reaction. FTIR tests show that the structural layer of graphite during the oxidation process bonds to a large number of functional groups and parts of these stable functional groups remain on the reduced structural layer of graphene. X-ray diffraction results show that the peaks of the graphite oxide shift to lower angles, become broader and the original graphite peak disappears. Suspensions of graphene oxide form condensed matter and graphene flocculating constituent during film deposition. Particle size analysis and SPM tests show that the particle sizes of the graphene oxide sheets that are dispersed in water show a tailing peak and a broad distribution while the graphene sheets show a singlet, narrower distribution, and smaller dimensions. Raman results show that during oxidation and reduction, the D peak and G peak of the samples gradually extend, ID/IG increases gradually and the degree of sample disorder increases. On the basis of the above analyses, the structural characteristics of the samples in the reaction are summarized.



Key wordsGraphite      Graphite oxide      Graphene      Oxidation reduction      Crystal structure     
Received: 30 September 2010      Published: 15 February 2011
MSC2000:  O641  
Fund:  

The project was supported by the Postgraduate Innovation Fund of Southwest University of Science and Technology, China (10ycjj21).

Corresponding Authors: SUN Hong-Juan     E-mail: sunhongjuan@swust.edu.cn
Cite this article:

YANG Yong-Hui, SUN Hong-Juan, PENG Tong-Jiang, HUANG Qiao. Synthesis and Structural Characterization of Graphene-Based Membranes. Acta Phys. -Chim. Sin., 2011, 27(03): 736-742.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB20110320     OR     http://www.whxb.pku.edu.cn/Y2011/V27/I03/736

(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
(2) Yang, Q. H.; Lü, W.; Yang, Y. G.; Wang, M. Z. New Carbon Materials 2008, 23, 97.
[杨全红, 吕 伟, 杨永岗, 王茂章. 新型炭材料, 2008, 23, 97.]
(3) Gu, Z. B.; Ji, G. H.; Lu, M. H. Journal of Nanjing University of Technology (Natural Science) 2010, 32, 105.
[顾正彬, 季根华, 卢明辉. 南京工业大学学报: 自然科学版, 2010, 32, 105.]
(4) Zhang, W. N.; He, W.; Zhang, X. L. New Chemical Materials 2010, 38, 15.
[张伟娜, 何 伟, 张新荔. 化工新型材料, 2010, 38, 15.]
(5) Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. Nature 2007, 446, 60.
(6) Geim, A. K.; Novoselov, K. S. Nature Mater. 2007, 6, 183.
(7) Kim, S. K.; Zhao, Y.; Jang, H.; Lee, Y. S.; Kim, M. J.; Ahn, H. J.; Kim, P.; Choi, Y. J.; Hong, H. B. Nature, 2009, 457, 706.
(8) Obraztsov, N. A. Nat. Nanotech. 2009, 4, 212.
(9) Tung, C. V.; Allen, J. M.; Yang, Y.; Kaner, B. R. Nat. Nanotech. 2009, 4, 25.
(10) Li, D.; Muller, M. B.; Gilje, S.; Kaner, B. R.; Wallace, G. G. Nat. Nanotech. 2008, 3, 101.
(11) Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gunko, Y.; Boland, J.; Niraj, P.; Duesberg, G.; Krishnamurti, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. Nat. Nanotech. 2008, 3, 563.
(12) Hamilton, C. E.; Lomeda; J. R.; Sun, Z. Z.; Tour, M. J.; Barron, R. D. Nano Lett. 2009, 9, 3460.
(13) Choucair, M.; Thordarson, P.; Stride, J. A. Nat. Nanotech. 2009, 4, 30.
(14) Wang, H. L.; Robinson, J. T.; Li, X. L.; Dai, H. J. J. Am. Chem. Soc. 2009, 131, 9910.
(15) Ramesh, P.; Bhagyalakshmi, S.; Sampath, S. J. Colloid Interface Sci. 2004, 274, 95.
(16) Stankovich, S.; Dikin, A. D.; Piner, D. R.; Kohlhaas, A. K.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, T. S.; Ruoff, S. R. Carbon 2007, 45, 1558.
(17) Yang, Y. H.; Sun, H. J.; Peng, T. J. Chin. J. Inorg. Chem. 2010, 26, 2083.
[杨勇辉, 孙红娟, 彭同江. 无机化学学报, 2010, 26, 2083.]
(18) Stankovich, S.; Piner, D. R.; Chen, X. Q.; Wu, N. Q.; Nguyen, T. S.; Ruoff, S. R. J. Mater. Chem. 2006, 16, 155.
(19) Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, D. R.; Stankovich, S.; Jung, I.; Field, A. D.; Ventrice, A. C.; Ruoff, S. R. Carbon 2009, 47, 145.
(20) Hu, W. B.; Peng, C.; Luo, W. J.; Lv, M.; Li, X. M.; Li, D.; Huang, Q.; Fan, C. H. ACS Nano 2010, 4, 4317.
(21) Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, D. R.; Dommett, H. B.; Guennadi, E.; Nguyen, T. S.; Ruoff, S. R. Nature 2007, 448, 457.
(22) Chen, C. M.; Yang, Y. G.; Wen, Y. F.; Yang, Q. H.; Wang, M. Z. New Carbon Materials 2008, 24, 345.
[陈成猛, 杨永岗, 温月芳, 杨金红, 王茂章. 新型炭材料, 2008, 24, 345.]
(23) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
(24) He, H. Y.; Klinowski, J.; Forster, M.; Lerf, A. Chem. Phys. Lett. 1998, 287, 53.
(25) Pan, Z. L.; Wan, P. Application Mineralogy; Wuhan University of Technology Press: Wuhan, 1993; pp 209-211.
[潘兆橹, 万 朴. 应用矿物学. 武汉: 武汉工业大学出版社, 1993: 209-211.]
(26) Titelman, G. I.; Gelman, V.; Bron, S.; Khalfin, R. L.; Cohen, Y.; Bianco-Peled, H. Carbon 2005, 43, 641.
(27) Mermoux, M.; Chabre, Y.; Rousseau, A. Carbon 1991, 29, 469.
(28) Singh, V. K.; Patra,M. K.; Manoth, M.; Gowd, G. S.; Vadera, S. R.; Kumar, N. New Carbon Materials 2009, 24, 147.
(29) Ferrari, C. A.; Robertson, J. Raman Spectroscopy in Carbons: from Nanotubes to Diamond; Chemical Industry Press: Beijing, 2007; pp 193-204; translated by Tan, P. H., Li, F., Cheng, H. M.
[Ferrari, C. A.; Robertson, J. 碳材料的拉曼光谱—从纳米管到金刚石. 谭平恒, 李 峰, 成会明, 译. 北京: 化学工业出版社, 2007: 193-204.]
(30) Ferrari, A. C.; Robertson, J. Phys. Rev. B 2000, 61, 14095.
(31) Yang, X. G.; Wu, Q. L. Raman Spectroscopy Analysis and Application; National Defense Industry Press: Beijing, 2008; pp 210-220.
[杨序纲, 吴琪琳. 拉曼光谱的分析与应用. 北京: 国防工业出版社, 2008: 210-220.]

[1] Qi HU,Chuanhong JIN. In Situ TEM Observation of Radiolysis and Condensation of Water via Graphene Liquid Cell[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 101-107.
[2] Hui NING,Wenhang WANG,Qinhu MAO,Shirui ZHENG,Zhongxue YANG,Qingshan ZHAO,Mingbo WU. Catalytic Electroreduction of CO2 to C2H4 Using Cu2O Supported on 1-Octyl-3-methylimidazole Functionalized Graphite Sheets[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 938-944.
[3] An XIE,Zhi WANG,Qiaoyu WU,Liping CHENG,Genggeng LUO,Di SUN. [Ag25(SC6H4Pri)18(dppp)6](CF3SO3)7·CH3CN (HSC6H4Pri = 4-t-isopropylthiophenol, and dppp = 1, 3-bis(diphenyphosphino)propane) Cluster Containing a Sandwich-like Skeleton: Structural Characterization and Optical Properties[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 776-780.
[4] Youkun ZHENG,Hui JIANG,Xuemei WANG. Multiple Strategies for Controlled Synthesis of Atomically Precise Alloy Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 740-754.
[5] Xue HAN,Jin YANG,Yingying LIU,Jianfang MA. Syntheses and Luminescent Properties of Coordination Polymers Based on 1, 2, 4-Triazole-Substituted Resorcin[4]arene[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 476-482.
[6] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[7] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[8] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[9] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[10] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[11] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[12] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[13] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[14] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[15] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.