Please wait a minute...
Acta Phys. -Chim. Sin.  2011, Vol. 27 Issue (03): 711-716    DOI: 10.3866/PKU.WHXB20110327
Pt-Ni Catalyst Supported on CMK-5 for the Electrochemical Oxidation of Methanol
DING Xiao-Chun, CHEN Xiu, ZHOU Jian-Hua, WANG Tao, SUN Dun, HE Jian-Ping
College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
Download:   PDF(695KB) Export: BibTeX | EndNote (RIS)      


Pt-Ni alloy catalysts with different atomic ratios were deposited on CMK-5 (carbon replicated from SBA-15 silica) by NaBH4 reduction. X-ray diffraction (XRD) suggests alloy formation between Pt and Ni. X-ray photoelectron spectroscopy (XPS) shows that Pt-Ni/CMK-5 (5:1) has more detectable oxidized Ni. More metallic Pt is present on Pt-Ni/CMK-5 (5:1) (atomic ratio) than on Pt/CMK-5. Oxidized Ni species, such as NiO, Ni(OH)2, and NiOOH, favor the adsorption of methanol and the dissociation of methanol from the surface of Pt. Cyclic voltammetry shows that Pt-Ni/CMK-5 (5:1) has the highest specific activity among the as-made catalysts and its electrochemical active area is 63.9 m2·g-1. It has more resistance to CO poisoning than Pt/CMK-5.

Key wordsCMK-5      Pt/CMK-5 catalyst      Pt-Ni/CMK-5 catalyst      Methanol      Electrooxidation     
Received: 27 October 2010      Published: 16 February 2011
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (50871053).

Corresponding Authors: HE Jian-Ping     E-mail:
Cite this article:

DING Xiao-Chun, CHEN Xiu, ZHOU Jian-Hua, WANG Tao, SUN Dun, HE Jian-Ping. Pt-Ni Catalyst Supported on CMK-5 for the Electrochemical Oxidation of Methanol. Acta Phys. -Chim. Sin., 2011, 27(03): 711-716.

URL:     OR

(1) Liu, X.; Chen, J.; Liu, G.; Zhang, L.; Zhang, H. M.; Yia, B. L. J. Power Sources 2010, 195, 4098.
(2) Li, W. Z.; Zhou, W. J.; Li, H. Q.; Zhou, Z. H.; Zhou, B.; Sun, G. Q.; Xin, Q. Electrochim. Acta 2004, 49, 1045.
(3) Yang, C. W.; Wang, D. L.; Hu, X. G.; Dai, C. S.; Liang, Z. J. Alloy. Compd. 2008, 448, 109.
(4) Wang, X. M.; Li, N.; Pfefferle, L. D.; Haller, G. L. J. Phys. Chem., C 2010, 114, 16996.
(5) Tang, H.; Chen, J. H.; Nie, L. H.; Liu, D. Y.; Deng, W.; Kuang, Y. F.; Yao, S. Z. J. Colloid Interface Sci. 2004, 269, 26.
(6) Steigerwalt, E. S.; Deluga, G. A.; Lukehart, C. M. J. Nanosci. Nanotechnol. 2003, 3, 247.
(7) Yen, C. H.; Shimizu, K.; Lin, Y. Y.; Bailey, F.; Cheng, I. F.; Wai, C. M. Energy Fuels 2007, 21, 2268.
(8) Shimazaki, Y.; Hayasaka, S.; Koyama, T,; Nagao, D.; Kobayashi, Y.; Konno, M. J. Colloid Interface Sci. 2010, 350, 580.
(9) Zhao, Y.; Yifeng, E.; Fan, L. Z.; Qiu, Y. F.; Yang, S. H. Electrochim. Acta 2007, 52, 5873.
(10) Do, J. S.; Chen, Y. T.; Lee, M. H. J. Power Sources 2007, 172, 623.
(11) Choi, J. H.; Park, K. W.; Kwon, B. K.; Sung, Y. E. J. Electrochem. Soc. 2003, 150, 773.
(12) Liu, F.; Lee, J. Y.; Zhou, W. J. J. Phys. Chem. B 2004, 108, 17959.
(13) Jeon, T. Y.; Yoo, S. J.; Cho, Y. H.; Lee, K. S.; Kang, S. H.; Sung, Y. E. J. Phys. Chem. C 2009, 113, 19732.
(14) Jiang, S. J.; Ma, Y. W.; Tao, H. S.; Jian, G. Q.; Wang, X. Z.; Fan, Y. N.; Zhu, J. M.; Hu, Z. J. Nanosci. Nanotechnol. 2010, 10, 3895.
(15) Yano, H.; Kataoka, M.; Yamashita, H.; Uchida, H.; Watanabe, M. Langmuir 2007, 23, 6438.
(16) He, C. Z.; Kunz, H. R.; Fenton, J. M. J. Electrochem. Soc. 2003, 150, A1071.
(17) Mathiyarasu, J.; Remona, A. M.; Mani, A.; Phani, K. L. N.; Yegnaraman, V. J. Solid State Electrochem. 2004, 8, 968.
(18) Liu, Z. L.; Ling, X. Y.; Su, X. D.; Lee, J. Y. J. Phys. Chem. B 2004, 108, 8234.
(19) Wang, Z. B.; Yin, G. P.; Shi, P. F. J. Electrochem. Soc. 2005, 153, A2406.
(20) Park, K. W.; Choi, J. H.; Ahn, K. S.; Sung, Y. E. J. Phys. Chem. B 2004, 108, 5989.
(21) Sun, D.; He, J. P.; Zhou, J. H.; Wang, T.; Di, Z. Y.; Ding, X. C. Acta Phys.-Chim. Sin. 2010, 26, 1219.
[孙 盾, 何建平, 周建华, 王 涛, 狄志勇, 丁晓春.. 物理化学学报, 2010, 26, 1219.]
(22) Lu, A. H.; Li, W. C.; Schmidt, W. G.; Schuth, F. Microporous Mesoporous Mat. 2005, 80, 117.
(23) Antolini, E.; Salgado, J. R. C.; Gonzalez, E. R. J. Electroanal. Chem. 2005, 580, 145.
(24) Zhou, J. H.; He, J. P.; Dang, W. J.; Zhao, G. W.; Zhang, C. X.; Mei, T. Q. Electrochem. Solid-State Lett. 2007, 10, B191.
(25) Pozio, A.; Francesco, D. M.; Cemmi, A. J. Power Sources 2002, 105, 13.
(26) Yang, R. Z.; Iiu X. P.; Zhang, H. R. Carbon 2005, 43, 11.
(27) Zhou, J. H.; He, J. P.; Dang, W. J.; Zhao, G. W.; Zhang, C. X. Electrochem. Solid-State Lett. 2007, 10, B191.
(28) Park, K. W.; Choi, J. H.; Kwon, B. K.; Lee, S. A.; Sung, Y. E. J. Phys. Chem. B 2002, 106, 1869.
(29) Gojkovic, S. L.; Vidakovic, T. R.; Durovic, D. R. Electrochim. Acta 2003, 48, 3607.
(30) Radmilovic, V.; Gasteiger, H. A.; Ross, P. N. J. Catal. 1995, 154, 98.
(31) Geng, D. S.; Lu, G. X. J. Phys. Chem. C 2007, 111, 11897.
(32) Liu, F.; Lee, J. Y.; Zhou, W. J. Small 2006, 2, 121.
(33) Watanabe, M.; Uchida, M.; Motoo, S. J. Electroanal. Chem. 1987, 229, 395.
(34) Park, K. W.; Choi, J. H.; Sung, Y. E. J. Phys. Chem. B 2003, 107, 5851.
(35) Lin, Y.; Cui, X.; Yen, C.; Wai, C. M. J. Phys. Chem. B 2005, 109, 14410.

[1] Yanhui YI,Xunxun WANG,Li WANG,Jinhui YAN,Jialiang ZHANG,Hongchen GUO. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 247-255.
[2] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[3] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[4] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.
[5] Ling-Ling LI,Ren CHEN,Jian DAI,Ye SUN,Zuo-Liang ZHANG,Xiao-Liang LI,Xiao-Wa NIE,Chun-Shan SONG,Xin-Wen GUO. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 769-779.
[6] Jin-Ling YIN,Jia LIU,Qing WEN,Gui-Ling WANG,Dian-Xue CAO. Phosphomolybdic Acid as a Mediator for Indirect Carbon Electrooxidation in LowTemperature Carbon Fuel Cell[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 370-376.
[7] Si HU,Qing ZHANG,Yan-Jun GONG,Ying ZHANG,Zhi-Jie WU,Tao DOU. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1785-1794.
[8] Zhao- min WAN,Xing WEI,Wei PENG,Zheng-Lei YIN,Li XIAO,Lin ZHUANG. On-Line Electrochemical Transmission Infrared Spectroscopic Study of Pb2+ Enhanced C―C Bond Breaking in the Ethanol Oxidation Reaction[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1467-1472.
[9] Chun-Xia TIAN,Jun-Shuai YANG,Xiao-Hua ZHANG,Jin-Hua CHEN. New Methanol-Tolerant Oxygen Reduction Electrocatalyst——Nitrogen-Doped Hollow Carbon Microspheres@Platinum Nanoparticles Hybrids[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1473-1481.
[10] Jun-Feng ZHAO,Xiao-Li SUN,Xu-Ri HUANG,Ji-Lai LI. A Theoretical Study on the Reactivity and Charge Effect of PtRu Clusters toward Methanol Activation[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1175-1182.
[11] Jian-Hong LIU,Cun-Qin Lü,Chun JIN,Gui-Chang WANG. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 950-960.
[12] Xiao-Meng CHENG,Yu LI,Zong CHEN,Hong-Ping LI,Xiao-Fang ZHENG. A Comparative Study on theNMR Relaxation of Methanol in Sub-and Super-Critical Mixtures of CO2 and Methanol[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2671-2677.
[13] HU Si, ZHANG Qing, YIN Qi, ZHANG Ya-Fei, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Catalytic Conversion of Methanol to Propylene over HZSM-5 Modified by NaOH and (NH4)2SiF6[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1374-1382.
[14] ZHAO Jun-Feng, SUN Xiao-Li, LI Ji-Lai, HUANG Xu-Ri. Theoretical Study of Methanol C―H and O―H Bond Activation by PtRu Clusters[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1077-1085.
[15] LI Li, HE Xiao-Li, QIN Tao, DAI Fu-Tao, ZHANG Xiao-Hua, CHEN Jin-Hua. Dual-Sacrificial Template Synthesis of One-Dimensional Tubular Pt-Mn3O4-C Composite with Excellent Electrocatalytic Performance for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 927-932.