Please wait a minute...
Acta Phys. -Chim. Sin.  2011, Vol. 27 Issue (04): 959-964    DOI: 10.3866/PKU.WHXB20110417
High-Temperature Synthesis of Zeolite Y
SHAN Zhi-Chao1, LIU Si-Yu1, LI Cai-Jin1, ZHU Long-Feng1, MENG Xiang-Ju2, XIAO Feng-Shou2
1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China;
2. Institute of Catalysis, Zhejiang University, Hangzhou, 310028, P. R. China
Download:   PDF(614KB) Export: BibTeX | EndNote (RIS)      


We hydrothermally synthesized sheet-like crystals of zeolite Y at high temperature (140 °C) using methyltriethoxysilane (MTS) as an additivity. Compared with the zeolite Y synthesized at 100 °C, the zeolite Y synthesized at high temperature has a high Si/Al ratio, a large crystalline width/thickness ratio and has good adsorption for organic volatile compounds. Characterization by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), 29Si nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectroscopy, elemental analysis and water contact angle measurements suggests that the zeolite Y synthesized at high temperature contains methyl groups, which can be responsible for the improvement in sample hydrophobicity and adsorption capacity.

Key wordsZeolite Y      High-temperature      Sheet-like morphology      Adsorption      Organosilane     
Received: 25 October 2010      Published: 08 March 2011
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (20973079).

Corresponding Authors: MENG Xiang-Ju, XIAO Feng-Shou     E-mail:;
Cite this article:

SHAN Zhi-Chao, LIU Si-Yu, LI Cai-Jin, ZHU Long-Feng, MENG Xiang-Ju, XIAO Feng-Shou. High-Temperature Synthesis of Zeolite Y. Acta Phys. -Chim. Sin., 2011, 27(04): 959-964.

URL:     OR

(1) Breck, D.W. Zeolite Molecular Sieves; John Wiley & Son: New York, 1973; p 92.
(2) Smirniotis, P. G.; Davydov, L.; Ruckenstein, E. Catalysis Reviews-Science and Engineering 1999, 41(1), 43.
(3) Davis, M. E.; Lobo, R. L. Chem. Mater. 1992, 4, 756.
(4) Sato, K.; Nishimura, Y.; Honna, K.; Matsubayashi, N.; Shimada, H. J. Catal. 2001, 200, 288.
(5) Berger, C.; Gl?ser, R.; Rakoczy, R. A.; Weitkamp, J. Microporous Mesoporous Mat. 2005, 83, 333.
(6) Zhou, L. P.; Deng, L.; Kou, Y.; Li, X. W. Acta Phys. -Chim. Sin. 2002, 18, 142.
[周灵萍, 邓 量, 寇 元, 李宣文. 物理化学学报, 2002, 18, 142.]
(7) (a) Lim, W. T.; Seo, S. M.; Wang, L. Z.; Lu, G. Q.; Heo, N. H.; Seff, K. Microporous Mesoporous Mat. 2010, 129, 11. (b) Lim, W. T.; Seo, S. M. J. Phys. Chem. C 2007, 111, 18294. (c) Seff, K. Microporous Mesoporous Mat. 2005, 85, 351. (d) Seff, K. J. Phys. Chem. B 2005, 109, 13840. (e) Zhen, S.; Bae, D.; Seff, K. J. Phys. Chem. B 2000, 104, 515. (f) Kwon, J. H.; Jang, S. B.; Kim, Y.; Seff, K. J. Phys. Chem. 1996, 100, 13720.
(8) Martins, L.; Hölderich, W.; Cardoso, D. J. Catal. 2008, 258, 14.
(9) Tang, Y.; Hua, W. M.; Gao, Z. Acta Phys. -Chim. Sin. 1992, 8, 595.
[唐 颐, 华伟明, 高 滋. 物理化学学报, 1992, 8, 595.]
(10) Cheng, Z. L.; Gao, E. Q.; Wan, H. L. Chem. Commun. 2004, 1718.
(11) Kiricsi, I.; Tasi, G.; F?rster, H.; Fejes, P. J. Mol. Struct. 1994, 317, 33.
(12) Jansang, B.; Nanok, T.; Limtrakul, J. J. Phys. Chem. C 2008, 112, 540.
(13) (a) Delprato, F.; Delmotte, L.; Guth, J. L.; Huve, L. Zeolites 1990, 10, 546. (b) Dougnier, F.; Patarin, J.; Guth, J. L. Zeolites 1992, 12, 160. (c) Dougnier, F.; Patarin, J.; Guth, J. L. Zeolites 1993, 13, 122. (d) Chatelain, T.; Patarin, J.; Soulard, M.; Guth, J. L. Zeolites 1995, 15, 90.
(14) (a) Kacirek, H.; Lechert, H. J. Phys. Chem. 1975, 79, 1589. (b) Kacirek, H.; Lechert, H. J. Phys. Chem. 1976, 80, 1291.
(15) Ma, S. J.; Li, L. S.; Xu, R. R.; Ye, Z. H. Chem. J. Chin. Univ. 1985, 6, 951.
[马淑杰, 李连生, 徐如人, 叶朝辉. 高等学校化学学报, 1985, 6, 951.]
(16) Ogura, M.; Kawazu, Y.; Takahashi, H.; Okubo, T. Chem. Mater. 2003, 15, 2661.
(17) Yang, S. Y.; Navrotsky, A.; Phillips, B. L. Microporous Mesoporous Mat. 2001, 46, 137.
(18) Tao, Y. S.; Kanoh, H.; Kaneko, K. J. Phys. Chem. B 2003, 107, 10974.
(19) Guillou, F.; Rouleau, L.; Pimgruber, G.; Valtchev, V. Microporous Mesoporous Mat. 2009, 119, 1.
(20) Gu, X. H.; Dong, J. H.; Nenoff, T. M. Ind. Eng. Chem. Res. 2005, 44, 937.
(21) Holmberg, B. A.; Wang, H. T.; Norbeck, J. M.; Yan, Y. S. Microporous Mesoporous Mat. 2003, 59, 13.
(22) Pacheco, P. M.; Alvarez, F.; Bucio, L.; Domínguez, J. M. J. Phys. Chem. C 2009, 113, 2247.
(23) Lim, W. T.; Seo, S. M. J. Phys. Chem. C 2007, 111, 18294.
(24) Do, T. O.; Vunong, G. T. J. Am. Chem. Soc. 2007, 129, 3810.
(25) Gu, F. N.; Wei, F.; Yang, J. Y.; Lin, N.; Lin, W, G.; Wang, Y.; Zhu, J. H. Chem. Mater. 2010, 22, 2442.
(26) Baerlocher, C.; Meier, W. M.; Olson, D. H. Atlas of Zeolite Frameork Types, 6th ed.; Elsevier: Amsterdam, 2007; p 140.
(27) Xu, R.; Pang, W.; Yu, J.; Huo, Q.; Chen, J.; Gao, Z. Chemistry of Zeolite and Related Porous Materials; Wiley: Singapore, 2007; pp 145-146.
(28) Sohn, J. R.; DeCanio, S. J.; Lunsford, J. H.; O′Donnell, D. J. Zeolites 1986, 6, 225.
(29) Flanigen, E. M.; Khatami, H.; Szymanski, H.A. Molecular Sieve Zeolites. I, Adv. Chem. Ser. No. 101; American Chemical Society: Washington, DC, 1971; pp 201: Flanigen, E. M.; Sand, L.B. (Eds.).
(30) Pouchert, C. J. The Aldrich Library of Infrared Spectra, 3rd ed.; Aldrich Chemical Co.: Milwaukee, 1981; pp 1-2.
(31) (a) Corma, A.; Esteve, P.; Martínez, A. J. Catal. 1996, 161, 11. (b) Corma, A.; Domine, M.; Gaono, J. A.; Jorda, J. L.; Navarro, M. T.; Rey, F.; Pariente, J. P.; Tsuji, J.; McCulloch, B.; Nemeth, L. T. Chem. Commun. 1998, 2211.
(32) Notari, B. Adv. Catal. 1996, 41, 253.
(33) Tatsumi, T.; Koyano, K. A.; Igarashi, N. Chem. Commun. 1998, 325.
(34) Sever, R. R.; Alcala, R.; Dumesic, J. A.; Root, T. W. Microporous Mesoporous Mat. 2003, 66, 53.

[1] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[2] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[3] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[4] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[5] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[6] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.
[7] . Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1236-1241.
[8] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.
[9] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728.
[10] Fang CHENG,Han-Qi WANG,Kuang XU,Wei HE. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.
[11] Tao-Na ZHANG,Xue-Wen XU,Liang DONG,Zhao-Yi TAN,Chun-Li LIU. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2013-2021.
[12] Jun-Jun CHEN,Cheng-Wu SHI,Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2029-2034.
[13] Shao-Zheng ZHANG,Jia LIU,Yan XIE,Yin-Ji LU,Lin LI,Liang LÜ,Jian-Hui YANG,Shi-Hao WEI. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2022-2028.
[14] Yan-Ting LI,Xin-Min LIU,Rui TIAN,Wu-Quan DING,Wei-Ning XIU,Ling-Ling TANG,Jing ZHANG,Hang LI. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1998-2003.
[15] Kui LI,Yao-Lin ZHAO,Jia DENG,Chao-Hui HE,Shu-Jiang DING,Wei-Qun SHI. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2264-2270.