Please wait a minute...
Acta Physico-Chimica Sinica  2011, Vol. 27 Issue (04): 893-899    DOI: 10.3866/PKU.WHXB20110431
ELECTROCHEMISTRY AND NEW ENERGY     
Effects of Thermal Treatment on the Electrochemical Behavior of Manganese Dioxide
MI Juan, WANG Yu-Ting, GAO Peng-Cheng, LI Wen-Cui
School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
Download:   PDF(8117KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Manganese dioxide (MnO2) was synthesized using a fluid phase method with potassium permanganate and manganous acetate as precursors. The obtained MnO2 was treated thermally at different temperatures. The structural transformation of MnO2, its electrochemical behavior as an electrode material for use in a supercapacitor were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 physical adsorption, thermogravimetry (TG), cyclic voltammetry, and galvanostastic charge-discharge. The results indicate that the synthesized MnO2 can be assigned to its α phase and that it possesses a mesoporous feature with a high surface area of up to 253 m2·g-1. After a low temperature thermal treatment (<350 °C), the manganese oxide retained its α-MnO2 crystal structure and its specific surface area was found to be approximately 170 m2·g-1. The specific capacitance of the single electrode increased from 267 F·g-1 for untreated MnO2 to 286 F·g-1 for the sample treated at 250 °C. However, high temperature thermal treatment (>450 °C) results in a transformation of the manganese oxide structure to α-Mn2O3 and then to α-Mn3O4. Additionally, the surface area reduced to ca 30 m2·g-1 and this lead to a dramatic decrease in the specific capacitance of manganese oxide. The electrochemical cycling stability of manganese oxide improved noticeably after low temperature thermal treatment and the electrode retained a good rate performance at a scan rate of 50 mV·s-1.



Key wordsManganese dioxide      Supercapacitor      Electrode material      Thermal treatment     
Received: 17 November 2010      Published: 14 March 2011
MSC2000:  O646  
Fund:  

The project was supported by the Program for New Century Excellent Talents in University of the Ministry of Education of China (NCET-08-0075).

Corresponding Authors: LI Wen-Cui     E-mail: wencuili@dlut.edu.cn
Cite this article:

MI Juan, WANG Yu-Ting, GAO Peng-Cheng, LI Wen-Cui. Effects of Thermal Treatment on the Electrochemical Behavior of Manganese Dioxide. Acta Physico-Chimica Sinica, 2011, 27(04): 893-899.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20110431     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I04/893

(1) Miller, J. R.; Simon, P. Science 2008, 321, 651.
(2) Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic Plenum Publishers: New York, 1999.
(3) Zheng, J. P.; Cygan, P. J.; Jow, T. R. J. Electrochem. Soc. 1995, 142(8): 2699.
(4) Brousse, T.; Taberna, P. L.; Crosnier, O.; Dugas, Romain.; Guillemet, P.; Scudeller, Y.; Zhou, Y. K.; Favier, F.; Bélanger, D.; Simon, P. J.Power Sources. 2007, 173, 633.
(5) Brousse, T.; Toupin, M.; Dugas, R.; Athouël, L.; Crosiner, O.; Bélanger, D. Electrochem. Soc. 2006, 153, A2171.
(6) Toupin, M.; Brousse, T.; Belanger, D. Chem. Mater. 2004, 16, 3184.
(7) Jones, D. J.; Wortham, E.; Rozière, J.; Favier, F.; Pascal, J. L.; Monconduit, L. Phys. Chem. Solids. 2004, 65, 235.
(8) Chin, S. F.; Pang, S. C.; Anderson, M. A. Electrochem. Soc. 2000, 147, A379.
(9) Pang, S. C.; Anderson, M. A.; Chapman, T. W. Electrochem. Soc. 2002, 149, A379.
(10) Shinomiya, T.; Gupta, V.; Miura, N. Electrochim Acta 2006, 51, 4412.
(11) Qu, D.; Shi, H. J.Power. Source. 1998, 74, 99.
(12) Qu, D. J. Power Sources. 2002, 109, 403.
(13) Xia, X. Battery Bimonthly 2006, 36, 195.
[夏 熙. 电 池, 2006, 36, 195.]
(14) Wagner, C. D.; Riggs, W. M.; Muilenberg, G. E. Handbook of X-Ray Photoelectron Spectroscopy-A Reference Book of Standard Data for Use in X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corporation and Physical Electronics Division Publishers: Eden Prairie, Minn, 1979.
(15) Tian, Y.; Yan, J.W.; Liu, X. X.; Xue, R.;Yi, B. L. Acta Phys.-Chim. Sin. 2010, 26(8), 2151.
[田 颖, 阎景旺, 刘小雪, 薛 荣, 衣宝廉. 物理化学学学报, 2010, 26(8), 2151.]
(16) Kozawa, A. The manuel of Manganese Dioxide; Sichuan Science and Technology Press: Chen Du, 1994: 79-80; translated by Xia, Y.
[Kozawa, A. 二氧化锰手册. 夏 熙, 译. 成都: 四川科技出版社, 1994: 79-80.]
(17) Liu , K. C.; Anderson, M. A. J. Electrochem. Soc. 1996, 143, 124.
(18) Subramanian, V.; Zhu, H.; Wei, B. J. Power Sources 2006, 159, 361.

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinica, 2018, 34(1): 22-35.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1828-1837.
[3] ZHAO Li-Ping, MENG Wei-Shuai, WANG Hong-Yu, QI Li. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Physico-Chimica Sinica, 2017, 33(4): 787-794.
[4] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 329-343.
[5] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 305-313.
[6] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2510-2516.
[7] LI Dao-Yan, ZHANG Ji-Chen, WANG Zhi-Yong, JIN Xian-Bo. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2245-2252.
[8] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 1944-1959.
[9] LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, HAO Chang-Long, LU Chen-Guang, ZHU Yi-Hua, TANG Zhi-Yong. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 130-148.
[10] SUN Meng, LI Jing-Hong. Recent Progress on Palladium-Based Oxygen Reduction Reaction Electrodes for Water Treatment[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 198-210.
[11] BAI Shou-Li, LI Xin, WEN Yue-Hua, CHENG Jie, CAO Gao-Ping, YANG Yu-Sheng, LI Dian-Qing. Effect of Electrolyte on the Electrochemical Performance of the MnO2 Cathode for Aqueous Rechargeable Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 2007-2017.
[12] DAWUT Gulbahar, LU Yong, ZHAO Qing, LIANG Jing, TAO Zhan-Liang, CHEN Jun. Quinones as Electrode Materials for Rechargeable Lithium Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1593-1603.
[13] LIU Zhao-Xin, LI Wei-Bin. Catalytic Activity and Deactivation of Toluene Combustion on Rod-Like Copper-Manganese Mixed Oxides[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1795-1800.
[14] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Physico-Chimica Sinica, 2016, 32(4): 975-982.
[15] WANG Yong-Fang, ZUO Song-Lin. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 481-492.