Please wait a minute...
Acta Physico-Chimica Sinica  2011, Vol. 27 Issue (05): 1244-1248    DOI: 10.3866/PKU.WHXB20110441
PHYSICAL CHEMISTRY OF MATERIALS     
Facile Synthesis of Gold Nanoflowers in a Polyvinyl Pyrrolidone Alkaline Aqueous Solution
REN Yue-Ping, XU Cheng-Cheng, FANG Yun
School of Chemical & Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. China
Download:   PDF(1326KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Three-dimensional (3D) gold nanoflowers of 60-80 nm in diameter were successfully synthesized using polyvinyl pyrrolidone (PVP) as both a protecting agent and a reducing agent in alkaline aqueous solutions. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images revealed that many antennae of 10-15 nm existed on their surfaces. X-ray diffraction (XRD) pattern suggested face-centered cubic (fcc) structures for these gold nanoflowers. The selected area electron diffraction (SAED) pattern of a single gold nanoflower indicated polycrystal characteristics. We found that there were three key stages in the growth of the gold nanoflowers: primary nanocrystals agglomerated to form multipod-like nanoparticles, and then the multipod-like nanoparticles aggregated into loose flower-like nanoparticles that ultimately grew into compact gold nanoflowers through Ostwald ripening. During the synthesis of gold nanoflowers, the molar ratios of PVP/HAuCl4 at fixed HAuCl4 and NaOH concentrations mostly influenced the morphologies of the final products. Therefore, a proper molar ratio of PVP/HAuCl4 and a suitable NaOH concentration were essential for the synthesis of typical gold nanoflowers with controlled sizes and antenna architectures.



Key wordsGold      Nanoflower      Nanoantenna      Polyvinyl pyrrolidone      Sodium hydroxide     
Received: 16 December 2010      Published: 21 March 2011
MSC2000:  O648  
Fund:  

The project was supported by the National Natural Science Foundation of China (20871059) and Jiangsu Provincial Post Graduate Innovation Plan, China (CX08B_118Z).

Corresponding Authors: FANG Yun     E-mail: yunfang@126.com
Cite this article:

REN Yue-Ping, XU Cheng-Cheng, FANG Yun. Facile Synthesis of Gold Nanoflowers in a Polyvinyl Pyrrolidone Alkaline Aqueous Solution. Acta Physico-Chimica Sinica, 2011, 27(05): 1244-1248.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20110441     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I05/1244

(1) Hashmi, S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766.
(2) Sun, Y. G.; Xia, Y. N. Analyst 2003, 128, 686.
(3) Xiang, C. X.; Güell, A. G.; Brown, M. A.; Kim, J. Y.; Hemminger, J. C.; Penner, R. M. Nano Lett. 2008, 8, 3017.
(4) Fan, M.; Thompson, M.; Andrade, M. L.; Brolo, A. G. Anal. Chem. 2010, 82, 6350.
(5) Lin, C. Y.; Yu, C. J.; Lin, Y. H.; Tseng, W. L. Anal. Chem. 2010, 82, 6830.
(6) Lippitz, M.; Dijk, M. A.; Orrit, M. Nano Lett. 2005, 5, 799.
(7) Deckert-Gaudig, T.; Deckert, V. Small 2009, 5, 432.
(8) Sharma, J.; Tai, Y.; Imae, T. J. Phys. Chem. C 2008, 112, 17033.
(9) Mohanty, A.; Garg, N.; Jin, R. Angew. Chem. Int. Edit. 2010, 49, 4962.
(10) Liang, H. Y.; Li, Z. P.; Wang, W. Z.; Wu, Y. S.; Xu, H. X. Adv. Mater. 2009, 21, 4614.
(11) Xie, J. P.; Zhang, Q. B.; Lee, J. Y.; Wang, D. I. C. ACS Nano 2008, 2, 2473.
(12) Kou, X. S.; Sun, Z. H.; Yang, Z.; Chen, H. J.; Wang, J. F. Langmuir 2009, 25, 1692.
(13) Joseph, D.; Geckeler, K. E. Langmuir 2009, 25, 13224.
(14) Zhao, L. L.; Ji, X. H.; Sun, X. J.; Li, J.; Yang, W. S.; Peng, X. G. J. Phys. Chem. C 2009, 113, 16645.
(15) Lu, L. H.; Ai, K. L.; Ozaki, Y. Langmuir 2008, 24, 1058.
(16) Jena, B. K.; Raj, C. R. Langmuir 2007, 23, 4064.
(17) Xu, D.; Gu, J. J.; Wang, W. N.; Yu, X. H.; Xi, K.; Jia, X. D. Nanotechnology 2010, 21, 375101 doi: 10.1088/0957-4484/21/37/ 375101.
(18) Liao, H. G.; Jiang, Y. X.; Zhou, Z. Y.; Chen, S. P.; Sun, S. G. Angew. Chem. Int. Edit. 2008, 47, 9100.
(19) Chen, S. H.; Wang, Z. L.; Ballato, J.; Foulger, S. H.; Carroll, D. L. J. Am. Chem. Soc. 2003, 125, 16186.
(20) Wu, H. Y.; Liu, M.; Huang, M. H. J. Phys. Chem. B 2006, 110, 19291.
(21) Goia, D. V.; Matijevi?, E. Colloids and Surf. A- Physicochemical and Engineering Aspects 1999, 146, 139.

[1] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1621-1627.
[2] ZHOU Yang, LI Gao. A Critical Review on Carbon-Carbon Coupling over Ultra-Small Gold Nanoclusters[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1297-1309.
[3] HU Xue-Jiao, GAO Guan-Bin, ZHANG Ming-Xi. Gold Nanorods——from Controlled Synthesis and Modification to Nano-Biological and Biomedical Applications[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1324-1337.
[4] WANG Li, LU Dan-Feng, GAO Ran, CHENG Jin, ZHANG Zhe, QI Zhi-Mei. Theoretical Analyses and Chemical Sensing Application of Surface Plasmon Resonance Effect of Nanoporous Gold Films[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1223-1229.
[5] CHEN Xiao-Yu, WANG Jing-Dong, YU An-Chi. Effect of Surrounding Media on Ultrafast Plasmon Dynamics of Gold Nanoparticles[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2184-2190.
[6] ZHANG Ji-Ping, CHENG Shuo-Zhen, LI Xue-Feng, DONG Jin-Feng. pH- and Temperature-Induced Micellization of the Dual Hydrophilic Block Copolymer Poly(methacrylate acid)-b-poly(N-(2-methacryloylxyethyl) pyrrolidone) in Aqueous Solution[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 2018-2026.
[7] LI Shu-Shuang, TAO Lei, ZHANG Qi, LIU Yong-Mei, CAO Yong. Recent Advances in Nano-Gold-Catalyzed Green Synthesis and Clean Reactions[J]. Acta Physico-Chimica Sinica, 2016, 32(1): 61-74.
[8] LI Xiao-Kun, MA Dong-Dong, ZHENG Yan-Ping, ZHANG Hong, DING Ding, CHEN Ming-Shu, WAN Hui-Lin. Performance of CO Oxidation over Highly Dispersed Gold Catalyst on TiOx/SiO2 Composite Supports[J]. Acta Physico-Chimica Sinica, 2015, 31(9): 1753-1760.
[9] ZHAO Qiao, LU Dan-Feng, LIU De-Long, CHEN Chen, HU De-Bo, QI Zhi-Mei. Study of Total Internal Reflection SERS Based on Self-Assembled Gold Nanoparticle Monolayer Film[J]. Acta Physico-Chimica Sinica, 2014, 30(7): 1201-1207.
[10] WANG Xin-Huan, HAN Qiu-Sen, LI Jing-Ying, YANG Rong, DIAO Guo-Wang, WANG Chen. Seedless Synthesis of Gold Nanorods and Applications in Photo-Thermal Cancer Therapy[J]. Acta Physico-Chimica Sinica, 2014, 30(7): 1363-1369.
[11] LI Yu-Ling, KAN Cai-Xia, WANG Chang-Shun, LIU Jin-Sheng, XU Hai-Ying, NI Yuan, XU Wei, KE Jun-Hua, SHI Da-Ning. Surface Plasmon Resonance Coupling Effect of Assembled Gold Nanorods Based on the FDTD Simulation[J]. Acta Physico-Chimica Sinica, 2014, 30(10): 1827-1836.
[12] WANG Chang-Shun, KAN Cai-Xia, NI Yuan, XU Hai-Ying. Facile Preparation and Growth Mechanism of New-Type Gold Nanoplates[J]. Acta Physico-Chimica Sinica, 2014, 30(1): 194-204.
[13] LIU Wen-Han, YUAN Rong-Hui, TENG Yuan-Jie, MA Chun-An. Electrochemical SERS of Self-Assembled Monolayer of Thiosalicylic Acid Adsorbed on Activated Gold Electrodes[J]. Acta Physico-Chimica Sinica, 2013, 29(12): 2599-2607.
[14] SHANG Yang, CHEN Yang, SHI Zhan-Bin, ZHANG Dong-Feng, GUO Lin. Synthesis and Visible Light Photocatalytic Activities of Au/Cu2O Heterogeneous Nanospheres[J]. Acta Physico-Chimica Sinica, 2013, 29(08): 1819-1826.
[15] WU Hong-Ying, WANG Huan-Wen. Synthesis and Characterization of NiCo2O4 Nanoflower/Activated Carbon Fiber Composite and Its Supercapacitor Properties[J]. Acta Physico-Chimica Sinica, 2013, 29(07): 1501-1506.