Please wait a minute...
Acta Physico-Chimica Sinica  2011, Vol. 27 Issue (05): 1075-1080    DOI: 10.3866/PKU.WHXB20110444
Adsorption and Dissociation of Methanol on Perfect FeS2(100) Surface
DU Yu-Dong1, ZHAO Wei-Na1, GUO Xin2, ZHANG Yong-Fan1, CHEN Wen-Kai1
1. Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China;
2. State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 410074, P. R. China
Download:   PDF(849KB) Export: BibTeX | EndNote (RIS)      


First-principles calculations based on density functional theory (DFT) and the periodical slab model were used to study the adsorption and dissociation of methanol on the perfect FeS2(100) surface. The adsorption energy and the geometric parameters on the different adsorption sites showed that the Fe site was the most favorable adsorption site and O atoms were found to bind to Fe atoms. After adsorption, the C―O and O―H bonds of methanol were elongated and the vibrational stretch frequency was red shifted. The calculation results proved that methanol was prone to decomposition resulting in methoxy groups and hydrogen. We calculated the adsorption behavior of these methoxy groups and hydrogen on the FeS2(100) surface and found that the Fe sites were also the most favorable adsorption sites. A possible decomposition pathway was investigated using transition state searching methods: first the O―H bond of methanol was decomposed producing the intermediate methoxy group and subsequently the C―H bond of the methoxy group was broken resulting in final products of formaldehyde and hydrogen.

Key wordsDensity functional theory      Methanol      FeS2(100) surface      Adsorption      Transition state     
Received: 15 December 2010      Published: 24 March 2011
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (90922022), State Key Laboratory of Coal Combustion Foundation of Huazhong University of Science and Technology, China (FSKLCC0814), and New Century Excellent Talents Program in University of Fujian Province, China (HX2006-103).

Corresponding Authors: CHEN Wen-Kai     E-mail:
Cite this article:

DU Yu-Dong, ZHAO Wei-Na, GUO Xin, ZHANG Yong-Fan, CHEN Wen-Kai. Adsorption and Dissociation of Methanol on Perfect FeS2(100) Surface. Acta Physico-Chimica Sinica, 2011, 27(05): 1075-1080.

URL:     OR

(1) Brown, J. R.; Bancroft, G. M.; Fyfe, W. S.; Mclean, R. A. N. Environ. Sci. Technol. 1979, 13(9), 1142.
(2) Wang, D. Z.; Long, X. Y.; Sun, S. Y. Chin. J. Nonfer. Metals 1991, 1(1): 15.
[王淀佐, 龙翔云, 孙水裕. 中国有色金属学报, 1991, 1(1), 15.]
(3) Lalvani, S. B.; DeNeve, B. A.; Weston, A. Corrosion Sci. 1991, 47(1), 55.
(4) Ogunsola, O. M.; Osseo-Assare, K. Fuel 1987, 66(4), 467.
(5) Olson, T. J.; Aplan, F. F. Processing and Utilization of High Sulfur Coal; Chug, Y. P., Cauldle, R. D. Eds.; Elsevier: Amsterdam, 1987; p 71.
(6) Singer, P. C.; Stumm, W. Science 1970, 167(1), 1121.
(7) Lowson, R. T. Chem. Rev. 1982, 82(5), 461.
(8) Nordstrom, D. K. SSSA Special Publication 1982, 10(5), 37.
(9) Huang, X.; Evangelou, V. P. Environmental Geochemistry of Sulfide Oxidation, ACS Symp. Ser. 550, 1994; Alpers, C. N., Blowes, D. W. Eds.; Chapter 34, p 562.
(10) Ennaoui, A.; Fiechter, S.; Jaegermann, W.; Tributsch, H. J. Electrochem. Soc. 1986, 133(1), 97.
(11) Nesbitt1, H. W.; Scaini, M.; H?chst, H.; Bancroft, G. M.; Schaufuss, A. G.; Szargan, R. Am. Mineral. 2000, 85(5-6), 850.
(12) Uhlig, I.; Szargan, R.; Nesbitt, H. W.; Laajalehto, K. Appl. Surf. Sci. 2001, 179(1-4), 222.
(13) Descostes, M.; Mercier, F.; Beaucaire, C.; Zuddas, P.; Trocellier, P. Nucl. Instru. Meth Phys. Res. B 2001, 181(1-4), 603.
(14) Mattila, S.; Leiro, J. A.; Laajalehto, K. Appl. Surf. Sci. 2003, No. 212-213, 97.
(15) Leiro, J. A.; Mattila, S. S.; Laajalehto, K. Surf. Sci. 2003, 547(1-2), 157.
(16) Mattila, S.; Leiro, J. A.; Heinonen, M. Surf. Sci. 2004, 566-568, 1097.
(17) Kim, E. J.; Batchelor, B. Environ. Sci. Technol. 2009, 43(8), 2899.
(18) Guevremont, J. M.; Strongin, D. R. M.; Schoonen, A. A. Surf. Sci. 1997, 391(1-3), 109.
(19) Stirling, A.; Bernasconi, M.; Parrinello, M. J. Chem. Phys. 2003, 118(19), 8917.
(20) Stirling, A.; Bernasconi, M.; Parrinello, M. J. Chem. Phys. 2003, 119(9), 4934.
(21) Boehme,C.; Marx, D. J. Am. Chem. Soc. 2003, 125(44), 13362.
(22) Sun, W.; Hu, Y. H.; Qiu, G. Z.; Qin, W. Q. J. Cent. South Univ. Technol. 2004, 11(4), 386.
[孙 伟, 胡岳华, 邱冠周, 覃文庆. 中南工业大学学报, 2004, 11(4), 386.]
(23) Von Oertzen, G. U.; Skinner, W. M.; Nesbitt, H. W. Phys. Rev. B 2005, 72(23), 235427.
(24) Nair, N. N.; Schreiner, E.; Marx, D. J. Am. Chem. Soc. 2006, 128(42), 13815.
(25) Li, Q.; Qin, W. Q.; Sun, W.; Qiu, G. Z. J. Cent. South Univ. Technol. 2007, 14(5), 618.
[黎 全, 覃文庆, 孙 伟, 邱冠周. 中南工业大学学报. 中南工业大学学报, 2007, 14(5), 618.]
(26) Blanchard, M.; Wright, K.; Gale, J. D.; Catlow, C. R. A. J. Phys. Chem. C 2007, 111(30), 11390.
(27) Kleppe, A. K.; Jephcoat, A. P. Mineralogical Magazine 2004, 68(3), 433.
(28) Du, Y. D.; Chen, W. K.; Zhang, Y. F.; Guo, X. Journal of Natural Gas Chemistry 2011, 20(1), 60.
(29) Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: NewYork, 1989, No. 1
(30) Cao, M. J.; Chen, W. K.; Liu, S. H.; Xu, Y.; Li, J. Q. Acta. Phys. -Chim. Sin 2006, 22(1), 11.
[曹梅娟, 陈文凯, 刘书红, 许 莹, 李俊籛. 物理化学学报, 2006, 22(1), 11.]
(31) Delley, B. J. Chem. Phys. 1990, 92(1), 508.
(32) Delley, B. J. Chem. Phys. 2000, 113(18), 7756.
(33) Lide, D. R. CRC handbook of Chemistry and Physics. 84th ed; CRC Press: Boca Ration, 2003-2004; pp 9-34
(34) Redhead, P. A. Vacuum 1962, 12(4), 203.
(35) Chen, W. K.; Liu, S. H.; Cao, M. J.; Lu, C, H.; Xu, Y.; Li, J. Q. Chin. J. Chem. 2006, 24(7), 872.
(36) Wang, Y. W.; Li, L. C.; Tian, A. M. Acta. Chim. Sin. 2008, 66(22), 2457.
[王译伟, 李来才, 田安民. 化学学报, 2008, 66(22), 2547]
(37) Jiang, S. Y.; Teng, B. T.; Lu, J. Q.; Liu, X. S.; Yang, P. F.; Yang, F. Y.; Luo, M. F. Acta. Phys. -Chim. Sin. 2008, 24(11), 2025.
[蒋仕宇, 滕波涛, 鲁继青, 刘雪松, 杨培芳, 杨飞勇, 罗孟飞. 物理化学学报, 2008, 24(11), 2025. ]
(38) Rosso, K. M.; Becker, U.; Hochella, M. F. Am. Mineral. 1999, 84(10), 1535.
(39) Herzberg, G. Molecular Spectra and Molecular Structure ??. Infrared and Raman Spectra of Polyatomic molecules; D. Van Nostrand Company: New York, 1945; p 335.
(40) Jackels, C. F. J. Chem. Phys. 1982, 76(1), 505.
(41) Lu, J. P.; Albert, M.; Bernasek, S. L. Surf. Sci. 1990, 239(1-2), 49.

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 256-262.
[3] YI Yanhui, WANG Xunxun, WANG Li, YAN Jinhui, ZHANG Jialiang, GUO Hongchen. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 247-255.
[4] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 286-295.
[5] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 263-269.
[6] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 303-313.
[7] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1822-1827.
[8] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1846-1854.
[9] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1875-1883.
[10] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1803-1810.
[11] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1898-1904.
[12] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1628-1634.
[13] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1411-1420.
[14] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1310-1323.
[15] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1236-1241.