Please wait a minute...
Acta Phys. -Chim. Sin.  2011, Vol. 27 Issue (05): 1261-1266    DOI: 10.3866/PKU.WHXB20110512
Controlled Synthesis and Characterization of the Structure and Property of Fe3O4 Nanoparticle-Graphene Oxide Composites
ZHANG Yi1,2, CHEN Biao2, YANG Zu-Pei1, ZHANG Zhi-Jun2
1. School of Chemistry and Materials Science, Shaanxi Normal University, Xi′an 710062, P. R. China;
2. Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province, P. R. China
Download:   PDF(596KB) Export: BibTeX | EndNote (RIS)      


Fe3O4 nanoparticle-graphene oxide (MGO) composites were prepared by chemically binding carboxylic acid-modified Fe3O4 nanoparticles to polyethylenimine-functionalized graphene oxide (GO). The structure, morphology, and magnetic properties of the composites were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and vibrating sample magnetometry (VSM). The results show that the Fe3O4 nanoparticle content in the MGO composites can be easily controlled by changing the ratio of Fe3O4 nanoparticles to GO in the reaction mixture. The MGO composites obtained are superparamagnetic with high saturation magnetization, which can potentially be applied in magnetic targeted drug delivery, gene transport, magnetic resonance imaging, bioseparation, and magnetic guided removal of aromatic contaminants in waste water and in other fields.

Key wordsGraphene oxide      Fe3O4 nanoparticle      Composite      Controlled synthesis      Characterization     
Received: 03 January 2011      Published: 31 March 2011
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (20873090, 21073224).

Corresponding Authors: YANG Zu-Pei, ZHANG Zhi-Jun     E-mail:;
Cite this article:

ZHANG Yi, CHEN Biao, YANG Zu-Pei, ZHANG Zhi-Jun. Controlled Synthesis and Characterization of the Structure and Property of Fe3O4 Nanoparticle-Graphene Oxide Composites. Acta Phys. -Chim. Sin., 2011, 27(05): 1261-1266.

URL:     OR

(1) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
(2) Shen, J. F.; Hu, Y. Z.; Shi, M.; Li, N.; Ma, H. W.; Ye, M. X. J. Phys. Chem. C 2010, 114, 1498.
(3) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
(4) Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H. J. Phys. Chem. B 2004, 108, 19912.
(5) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.
(6) Di, C. A.; Wei, D. C.; Yu, G.; Liu, Y. Q.; Guo, Y. L.; Zhu, D. B. Adv. Mater. 2008, 20, 3289.
(7) Wu, J. S.; Pisula, W.; Mullen, K. Chem. Rev. 2007, 107, 718.
(8) Huang, J.; Zhang, L. M.; Chen, B.; Ji, N.; Chen, F. H.; Zhang, Y.; Zhang Z. J. Nanoscale 2010, 2, 2733.
(9) Zhang, X. Y.; Yang, X. Y.; Ma, Y. F.; Huang, Y.; Chen, Y. S. Journal of Nanoscience and Nanotechnology 2010, 10, 2984.
(10) Yang, X. Y.; Zhang, X. Y.; Ma, Y. F.; Huang, Y.; Wangand, Y. S.; Chen, Y. S. J. Mater. Chem. 2009, 19, 2710.
(11) Zhang, L. M.; Xia, J. G.; Zhao, Q. H.; Liu, L. W.; Zhang, Z. J. Small 2010, 6, 537.
(12) Si, Y. C.; Samulski, E. T. Chem. Mater. 2008, 20, 6792.
(13) Muszynski, R.; Seger, B.; Kamat, P. V. J. Phys. Chem. C 2008, 112, 5263.
(14) Xu, C.; Wang, X.; Zhu, J. W. J. Phys. Chem. C 2008, 112, 19841.
(15) Cong, H. P.; He, J. J.; Lu, Y.; Yu, S. H. Small 2010, 6, 169.
(16) He, F.; Fan, J. T.; Ma, D.; Zhang, L. M.; Leung, C. W.; Chan, H. L. Carbon 2010, 48, 3139.
(17) Zhang, Y.; Chen, B.; Zhang, L. M.; Huang, J.; Chen, F. H.; Yang, Z. P.; Yao. J. L.; Zhang, Z. J. Nanoscale, published online: 07 Feb, 2011, DOI: 10.1039/C0NR00776E.
(18) Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X. J. Am. Chem. Soc. 2004, 126, 273.
(19) Chen, Z. P.; Zhang, Y.; Xu, K.; Xu, R. Z.; Liu, J. W.; Gu, N. Journal of Nanoscience and Nanotechnology 2008, 8, 12.
(20) Hummers, W.; Offeman, R. J. Am. Chem. Soc. 1958, 80, 1339.
(21) Zhu, C. X.; Peng, D. F. Speciality Petrochemicals 2010, 27, 57.
(22) Paredes, J. I.; Villar-Rodil, S.; Solis-Fernandez, P.; Martinez-Alonso, A.; Tascon, J. M. D. Langmuir 2009, 25, 5957.
(23) Bourlinos, A. B.; Gournis, D.; Petridis, D.; Szabo, T.; Szeri, A.; Dekany, I. Langmuir 2003, 19, 6050.
(24) Stankovich, S. S.; Piner, R. D.; Nguyen, S. B. T.; Ruoff, R. S. Carbon 2006, 44, 3342.
(25) Chin, S. F.; Iyer, K. S.; Raston, C. L. Lab. Chip. 2008, 8, 439.
(26) Rocchiccioli-Deltche, C.; Franck, R.; Cabuil, V.; Massart, R. J. Chem. Res. 1987, 5, 126.
(27) Popplewell, J.; Sakhnini, L. J. Magn. Mater. 1995, 142, 72.

[1] Xiuli LU,Yingying HAN,Tongbu LU. Structure Characterization and Application of Graphdiyne in Photocatalytic and Electrocatalytic Reactions[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1014-1028.
[2] Yasong ZHAO,Lijuan ZHANG,Jian QI,Quan JIN,Kaifeng LIN,Dan WANG. Graphdiyne with Enhanced Ability for Electron Transfer[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1048-1060.
[3] Xueting LIN,Mingli FU,Hui HE,Junliang WU,Limin CHEN,Daiqi YE,Yun HU,Yifan WANG,William WEN. Synthesis of MnOx-CeO2 Using Metal-Organic Framework as Sacrificial Template and Its Performance in the Toluene Catalytic Oxidation Reaction[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 719-730.
[4] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[5] Teng LU,Yongxiang ZHOU,Hongxia GUO. Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1144-1150.
[6] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[7] Guo-Min LI,Bao-Shun ZHU,Li-Ping LIANG,Yu-Ming TIAN,Bao-Liang LÜ,Lian-Cheng WANG. Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1715-1720.
[8] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[9] Xue-Jiao HU,Guan-Bin GAO,Ming-Xi ZHANG. Gold Nanorods——from Controlled Synthesis and Modification to Nano-Biological and Biomedical Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1324-1337.
[10] Chi ZHANG,Zhi-Jiao WU,Jian-Jun LIU,Ling-Yu PIAO. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1492-1498.
[11] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[12] Jun-Tao LI,Jiao-Hong WU,Tao ZHANG,Ling HUANG. Preparation of Biochar from Different Biomasses and Their Application in the Li-S Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 968-975.
[13] Xiao-Ping GAO,Zhang-Long GUO,Ya-Nan ZHOU,Fang-Li JING,Wei CHU. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 602-610.
[14] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[15] Min FANG,Zong-Yuan WANG,Chang-Jun LIU. Characterization and Application of Au Nanoparticle/Agarose Composite Film Fabricated by Room Temperature Electron Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 435-440.