Please wait a minute...
Acta Physico-Chimica Sinica  2011, Vol. 27 Issue (05): 1261-1266    DOI: 10.3866/PKU.WHXB20110512
Controlled Synthesis and Characterization of the Structure and Property of Fe3O4 Nanoparticle-Graphene Oxide Composites
ZHANG Yi1,2, CHEN Biao2, YANG Zu-Pei1, ZHANG Zhi-Jun2
1. School of Chemistry and Materials Science, Shaanxi Normal University, Xi′an 710062, P. R. China;
2. Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province, P. R. China
Download:   PDF(596KB) Export: BibTeX | EndNote (RIS)      


Fe3O4 nanoparticle-graphene oxide (MGO) composites were prepared by chemically binding carboxylic acid-modified Fe3O4 nanoparticles to polyethylenimine-functionalized graphene oxide (GO). The structure, morphology, and magnetic properties of the composites were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and vibrating sample magnetometry (VSM). The results show that the Fe3O4 nanoparticle content in the MGO composites can be easily controlled by changing the ratio of Fe3O4 nanoparticles to GO in the reaction mixture. The MGO composites obtained are superparamagnetic with high saturation magnetization, which can potentially be applied in magnetic targeted drug delivery, gene transport, magnetic resonance imaging, bioseparation, and magnetic guided removal of aromatic contaminants in waste water and in other fields.

Key wordsGraphene oxide      Fe3O4 nanoparticle      Composite      Controlled synthesis      Characterization     
Received: 03 January 2011      Published: 31 March 2011
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (20873090, 21073224).

Corresponding Authors: YANG Zu-Pei, ZHANG Zhi-Jun     E-mail:;
Cite this article:

ZHANG Yi, CHEN Biao, YANG Zu-Pei, ZHANG Zhi-Jun. Controlled Synthesis and Characterization of the Structure and Property of Fe3O4 Nanoparticle-Graphene Oxide Composites. Acta Physico-Chimica Sinica, 2011, 27(05): 1261-1266.

URL:     OR

(1) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
(2) Shen, J. F.; Hu, Y. Z.; Shi, M.; Li, N.; Ma, H. W.; Ye, M. X. J. Phys. Chem. C 2010, 114, 1498.
(3) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
(4) Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H. J. Phys. Chem. B 2004, 108, 19912.
(5) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.
(6) Di, C. A.; Wei, D. C.; Yu, G.; Liu, Y. Q.; Guo, Y. L.; Zhu, D. B. Adv. Mater. 2008, 20, 3289.
(7) Wu, J. S.; Pisula, W.; Mullen, K. Chem. Rev. 2007, 107, 718.
(8) Huang, J.; Zhang, L. M.; Chen, B.; Ji, N.; Chen, F. H.; Zhang, Y.; Zhang Z. J. Nanoscale 2010, 2, 2733.
(9) Zhang, X. Y.; Yang, X. Y.; Ma, Y. F.; Huang, Y.; Chen, Y. S. Journal of Nanoscience and Nanotechnology 2010, 10, 2984.
(10) Yang, X. Y.; Zhang, X. Y.; Ma, Y. F.; Huang, Y.; Wangand, Y. S.; Chen, Y. S. J. Mater. Chem. 2009, 19, 2710.
(11) Zhang, L. M.; Xia, J. G.; Zhao, Q. H.; Liu, L. W.; Zhang, Z. J. Small 2010, 6, 537.
(12) Si, Y. C.; Samulski, E. T. Chem. Mater. 2008, 20, 6792.
(13) Muszynski, R.; Seger, B.; Kamat, P. V. J. Phys. Chem. C 2008, 112, 5263.
(14) Xu, C.; Wang, X.; Zhu, J. W. J. Phys. Chem. C 2008, 112, 19841.
(15) Cong, H. P.; He, J. J.; Lu, Y.; Yu, S. H. Small 2010, 6, 169.
(16) He, F.; Fan, J. T.; Ma, D.; Zhang, L. M.; Leung, C. W.; Chan, H. L. Carbon 2010, 48, 3139.
(17) Zhang, Y.; Chen, B.; Zhang, L. M.; Huang, J.; Chen, F. H.; Yang, Z. P.; Yao. J. L.; Zhang, Z. J. Nanoscale, published online: 07 Feb, 2011, DOI: 10.1039/C0NR00776E.
(18) Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X. J. Am. Chem. Soc. 2004, 126, 273.
(19) Chen, Z. P.; Zhang, Y.; Xu, K.; Xu, R. Z.; Liu, J. W.; Gu, N. Journal of Nanoscience and Nanotechnology 2008, 8, 12.
(20) Hummers, W.; Offeman, R. J. Am. Chem. Soc. 1958, 80, 1339.
(21) Zhu, C. X.; Peng, D. F. Speciality Petrochemicals 2010, 27, 57.
(22) Paredes, J. I.; Villar-Rodil, S.; Solis-Fernandez, P.; Martinez-Alonso, A.; Tascon, J. M. D. Langmuir 2009, 25, 5957.
(23) Bourlinos, A. B.; Gournis, D.; Petridis, D.; Szabo, T.; Szeri, A.; Dekany, I. Langmuir 2003, 19, 6050.
(24) Stankovich, S. S.; Piner, R. D.; Nguyen, S. B. T.; Ruoff, R. S. Carbon 2006, 44, 3342.
(25) Chin, S. F.; Iyer, K. S.; Raston, C. L. Lab. Chip. 2008, 8, 439.
(26) Rocchiccioli-Deltche, C.; Franck, R.; Cabuil, V.; Massart, R. J. Chem. Res. 1987, 5, 126.
(27) Popplewell, J.; Sakhnini, L. J. Magn. Mater. 1995, 142, 72.

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinica, 2018, 34(1): 22-35.
[2] LI Guo-Min, ZHU Bao-Shun, LIANG Li-Ping, TIAN Yu-Ming, Lü Bao-Liang, WANG Lian-Cheng. Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1715-1720.
[3] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1436-1445.
[4] HU Xue-Jiao, GAO Guan-Bin, ZHANG Ming-Xi. Gold Nanorods——from Controlled Synthesis and Modification to Nano-Biological and Biomedical Applications[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1324-1337.
[5] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1492-1498.
[6] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1230-1235.
[7] LI Jun-Tao, WU Jiao-Hong, ZHANG Tao, HUANG Ling. Preparation of Biochar from Different Biomasses and Their Application in the Li-S Battery[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 968-975.
[8] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 554-562.
[9] GAO Xiao-Ping, GUO Zhang-Long, ZHOU Ya-Nan, JING Fang-Li, CHU Wei. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 602-610.
[10] LI Shen-Hui, LI Jing, ZHENG An-Min, DENG Feng. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 270-282.
[11] FANG Min, WANG Zong-Yuan, LIU Chang-Jun. Characterization and Application of Au Nanoparticle/Agarose Composite Film Fabricated by Room Temperature Electron Reduction[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 435-440.
[12] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2542-2549.
[13] QUAN Quan, XIE Shun-Ji, WANG Ye, XU Yi-Jun. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2404-2423.
[14] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2284-2292.
[15] LI Wan-Long, LI Yue-Jiao, CAO Mei-Ling, QU Wei, QU Wen-Jie, CHEN Shi, CHEN Ren-Jie, WU Feng. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2261-2267.