Please wait a minute...
Acta Physico-Chimica Sinica  2011, Vol. 27 Issue (05): 1103-1107    DOI: 10.3866/PKU.WHXB20110521
Electronic Transport Properties of Graphene Nanoribbons with Nanoholes
SUN Da-Li1, PENG Sheng-Lin1, OUYANG Jun1, OUYANG Fang-Ping1,2
1. School of Physics Science and Technology, Central South University, Changsha 410083, P. R. China;
2. College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, P. R. China
Download:   PDF(659KB) Export: BibTeX | EndNote (RIS)      


Based on the density of the general theory, the structures of ziqzag graphene nanoribbons (ZGNRs) (N=17, N is the number of carbon chain) with nanoholes are optimized and then get the transport property of the electrons in these systems with different holes through the calculation. The results show that the conductance is not only related to the quantum confinement effect, but also confined by the symmetry of the hole and the configuration of the diagonal symmetry is larger than the longitudinal symmetry′s in the presence of a single-hole. In the case of two holes, the conduction of the system is advanced with the growth of the distance between the two holes because of the coupling effect. At the same time, we can get some quantum phenomenon which can be explained by the model of one- dimensional double barrier.

Key wordsGraphene nanoribbon      Nanoholes      Quantum confinement effect      Symmetry     
Received: 12 December 2010      Published: 08 April 2011
MSC2000:  O641  

The project was supported by the China Postdoctoral Science Foundation (201003009, 20090460145), Fundamental Research Funds for the Central Universities, China (201012200053), Science and Technology Program of Hunan Province, China (2010DFJ411), and Science Develop Foundation of Central South University, China (08SDF02, 09SDF09).

Corresponding Authors: OUYANG Fang-Ping     E-mail:
Cite this article:

SUN Da-Li, PENG Sheng-Lin, OUYANG Jun, OUYANG Fang-Ping. Electronic Transport Properties of Graphene Nanoribbons with Nanoholes. Acta Physico-Chimica Sinica, 2011, 27(05): 1103-1107.

URL:     OR

(1) Peres, N. M. R.; Klironomo, F. D.; Tsai, S. W.; Santos, J. R.; Lopes, J. M. B.; Castro, A. H. Eur. Phys. Lett. 2007, 80, 67007.
(2) Ouyang, F. P.; Yang, Z. X.; Xiao, J.; Wu, D.; Xu, H. J. Phys. Chem. C 2010, 114, 15578.
(3) Palacios, J. J.; Rossier, J. F.; Brey, L. Phys. Rev. B 2008, 77, 195428.
(4) Ouyang, F. P.;Wang, H. Y.; Li, M. J.; Xiao, J.; Xu, H. Acta Phys. Sin. 2008, 57, 7132.
[欧阳方平, 王焕友, 李明君, 肖 金, 徐 慧. 物理学报, 2008, 57 ,7132.]
(5) Ouyang, F. P.; Xu, H.; Lin, F. Acta Phys. Sin. 2009, 58, 4132.
[欧阳方平, 徐 慧, 林 峰. 物理学报, 2009, 58, 4132.]
(6) Ouyang, F. P.;Wang, X. J.; Zhang, H.; Xiao, J.; Chen, L.N.; Xu, H. Acta Phys. Sin. 2009, 58, 5640.
[欧阳方平, 王晓军, 张 华, 肖 金, 陈灵娜, 徐 慧. 物理学报, 2009, 58, 5640.]
(7) Yan, J. Y.; Zhang, P.; Sun, B.; Zhou, L.; Wang, Z. G.; Duan, S. Q.; Zhao, X. G. Phys. Rev. B 2009, 79, 115403.
(8) Shen, T.; Wu, Y. Q.; Capano, M. A.; Rokhinson, L. P.; Engel, L. W.; Ye, P. D. Appl. Phys. Lett. 2008, 93, 122102.
(9) Xiong, Y. J.; Kong, X. L. Physica B 2010, 405, 1690.
(10) Zhou, Y. X.; Ernzerhof, M. J. Chem. Phys. 2010, 132, 104706.
(11) Rosales, L.; Pacheco, M.; Barticevic, Z.; León, A.; Latgé, A.; Orellana, P. A. Phys. Rev. B 2009, 80, 073402.
(12) Topsakal, M.; Aktürk, E.; Sevin?li, H.; Ciraci, S. Phys. Rev. B 2008, 78, 235435.
(13) Zheng, X. H.; Zhang, G. R.; Zeng, Z.; Víctor, M.; García, S.; Colin, J. L. Phys. Rev. B. 2009, 80, 075413.
(14) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
(15) Ren, Y.; Chen, K. Q. J. Appl. Phys. 2010, 107, 044514.
(16) Bahamon, D. A.; Pereira, A. L. C.; Schulz, P. A. Phys. Rev. B 2010, 82, 165438.
(17) Canning, A.; Galli, G.; Kim, J. Phys. Rev. Lett. 1997, 78, 4442.
(18) Yamamoto, H. Appl. Phys. A 1987, 42, 245.
(19) Zhao, X. P.; Wang, C. K. Journal of Shandong Normal University 1999, 14, 3.
[赵锡平, 王传奎. 山东师大学报自然科学, 1999, 14, 3.]

[1] WU Hai-Fei, CHEN Yao, XU Shan-Hu, YAN Yong-Hong, SI Jian-Xiao, TAN Yong-Sheng. Molecular Beam Epitaxy Growth and Surface Structural Characteristics of PbTe(111) Thin Film[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 419-425.
[2] HAO Xu-Qiang, YANG Hao, JIN Zhi-Liang, XU Jing, MIN Shi-Xiong, Lü Gong-Xuan. Quantum Confinement Effect of Graphene-Like C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Production fromWater Splitting[J]. Acta Physico-Chimica Sinica, 2016, 32(10): 2581-2592.
[3] DONG Wen-Jing, ZHAO Jian-Xi. Self-Assembly of Cationic/Anionic Surfactants with Highly Dissymmetric Lengths of Alkyl Tails[J]. Acta Physico-Chimica Sinica, 2015, 31(8): 1535-1540.
[4] BIAN Jiang-Yu, YUE Shu-Mei, ZHANG Min, ZHANG Jing-Ping. Effects of Azido Bridge on Magnetic Properties of Dinuclear Nickel Complexes: Density Functional Theory Studies[J]. Acta Physico-Chimica Sinica, 2015, 31(6): 1086-1092.
[5] ZHOU Jie, LI Bo-Lin, ZHU Pei-Zhi, LU Xiao-Lin. Vibrational Activity Change of Self-Assembled Monolayers upon Chemical Attachment and Nanoscale Block Revealed by Surface Enhanced Raman Spectroscopy[J]. Acta Physico-Chimica Sinica, 2014, 30(4): 623-627.
[6] SUN Jin, LIANGWan-Zhen. Effects of External Field and Nanoribbon Length on the Electronic Structure and Properties of Graphene Nanoribbons[J]. Acta Physico-Chimica Sinica, 2014, 30(3): 439-445.
[7] ZHANG Hui, YAN Jian-Xin, WU Shu-Ting, LI Dan, WAN Shi-Gang, DING Lei, LIN Li-Rong. Further Understanding on the Measurement Methods for Solid-State Circular Dichroism Spectroscopy——Discussion on Concentration Effects[J]. Acta Physico-Chimica Sinica, 2013, 29(12): 2481-2497.
[8] LU Jun-Ran, LI Yi, YU Ji-Hong, LU Ying. Predicting Hypothetical Zeolite Frameworks Using Program FraGen[J]. Acta Physico-Chimica Sinica, 2013, 29(08): 1661-1665.
[9] ZHAO Lei, WAN Shi-Gang, CHEN Cheng-Dong, LIN Yi-Ji, FANG Xue-Ming, ZHANG Hui. Mirror Symmetry Breaking and Absolute Configuration Correlations of Fe(III) Complexes with Achiral Substituted o-Iminobenzosemiquinonato Ligands[J]. Acta Physico-Chimica Sinica, 2013, 29(06): 1183-1191.
[10] WANG Wen-Qing, GONG Yan, SHEN Xin-Chun, ZHANG Yu-Feng. Experimental Test of“Parity-Time Asymmetry”in Electron Spin-Flip Raman Scattering of the N+H…O Hydrogen Bond in Chiral Alanine Crystals[J]. Acta Physico-Chimica Sinica, 2013, 29(03): 473-478.
[11] YANG Yi, YE Wei, CHEN Xiao. Preparation and Controlled Assembly of Asymmetric Janus Particles[J]. Acta Physico-Chimica Sinica, 2012, 28(11): 2525-2535.
[12] WANG Wen-Qing, SHEN Xin-Chun, WU Ji-Lan, GONG Yan, SHEN Guo-Hua, ZHAO Hong-Kai. Heat Capacity and DC-Magnetic Susceptibility Evidence for the Asymmetry of Electron Spin-Flip Phase Transition of N+H…O- Bond in Chiral Alanine Crystal[J]. Acta Physico-Chimica Sinica, 2012, 28(04): 773-780.
[13] LIU Cheng-Yong, YAN Jian-Xin, LIN Yi-Ji, LI Dan, FANG Xue-Ming, ZHANG Hui. Mirror Symmetry Breaking of cis-[Ni(NCS)2tren]: Special Chiral Conformations of Chelate Rings[J]. Acta Physico-Chimica Sinica, 2012, 28(02): 257-264.
[14] XING Sheng-Kai, LI Yun, ZHAO Xue-Zhuang, CAI Zun-Sheng, SHANG Zhen-Feng, WANG Gui-Chang. Molecular Symmetry of Möbius Cyclacenes[J]. Acta Physico-Chimica Sinica, 2011, 27(05): 1000-1004.
[15] LIU Hong, CHEN Yan-Qin, YANG Yu-Qiong. Inverse Hydrogen Bond between Silicane and AB-Type[J]. Acta Physico-Chimica Sinica, 2010, 26(08): 2286-2291.