Please wait a minute...
Acta Physico-Chimica Sinica  2011, Vol. 27 Issue (06): 1487-1492    DOI: 10.3866/PKU.WHXB20110621
CATALYSIS AND SURFACE SCIENCE     
Structure, Surface Properties and Photocatalytic Activity of TiO2 and TiO2/SiO2 Catalysts Prepared at Different pH Values
QIU Wei, REN Cheng-Jun, GONG Mao-Chu, HOU Yun-Ze, CHEN Yao-Qiang
Key Laboratory of Green Chemistry & Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
Download:   PDF(763KB) Export: BibTeX | EndNote (RIS)      

Abstract  

TiO2 and SiO2-doped TiO2 (TiO2/SiO2) catalysts were prepared using aqueous solutions containing a TiOSO4 and/or SiO2 sol in which NH3·H2O was used to adjust the pH value by a precipitation method. The as-synthesized photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption (BET), UV-Vis diffuse reflectance spectroscopy, NH3 temperature programmed desorption (NH3-TPD), and Fourier transform infrared (FT-IR) spectroscopy. The XRD patterns showed that anatase and rutile coexisted in the as-prepared TiO2 and the rutile phase content increased with the increase in pH value. However, only anatase-TiO2 was observed in the TiO2/SiO2 catalysts. SEM revealed that the surface morphology of the particles was a sub-spherical shape and some agglomeration occurred on the surface while the particle size was mostly between 10 and 25 nm. Surface area measurements showed that the surface areas of the catalysts increased slightly with the increase in pH value. The incorporation of SiO2 increased the surface area. NH3-TPD analysis indicated that the amount of surface acid increased as the pH increased. The amount of surface acid on SiO2-doped TiO2 was higher than that on TiO2 when they were prepared at identical pH values. The addition of silica and the high pH value environment led to more surface hydroxyl groups on the catalysts as determined by FT-IR spectroscopy. The photocatalytic activity of the catalysts improved remarkably with the increase in pH value. The photocatalytic activity of SiO2-doped TiO2 is better than that of TiO2. The TiO2/SiO2 catalyst has better durability.



Key wordspH      TiO2      SiO2-doping      Microstructure      Surface property      Photocatalysis     
Received: 25 February 2011      Published: 04 May 2011
MSC2000:  O643  
Corresponding Authors: REN Cheng-Jun, CHEN Yao-Qiang     E-mail: renchengjun@scu.edu.cn. nic7501@scu.edu.cn
Cite this article:

QIU Wei, REN Cheng-Jun, GONG Mao-Chu, HOU Yun-Ze, CHEN Yao-Qiang. Structure, Surface Properties and Photocatalytic Activity of TiO2 and TiO2/SiO2 Catalysts Prepared at Different pH Values. Acta Physico-Chimica Sinica, 2011, 27(06): 1487-1492.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20110621     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I06/1487

(1) Kim, D. S.; Kwak, S. Y. Appl. Catal. A: Gen. 2007, 323, 110.
(2) Hu, Y. F.; Li, Y. X.; Peng, S. Q,; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2008, 24 (11), 2071.
[胡元方, 李越湘, 彭绍琴, 吕功煊, 李树本. 物理化学学报, 2008, 24 (11), 2071.]
(3) Bao, N.; Zhang, F.; Ma, Z. H.;Wei, Z. T.; Sun, J.; Liu, F. Acta Chim. Sin. 2007, 65 (23), 2786.
[包南, 张锋, 马志会, 魏振涛, 孙剑, 刘峰. 化学学报, 2007, 65 (23), 2786.]
(4) Chen, Y. H.; Shen, J.; Zhang, Z. Chin. J. Catal. 2008, 29 (4), 356.
[陈垚翰, 沈俊, 张昭. 催化学报, 2008, 29 (4): 356.]
(5) Kang, C. H.; Guo, T.; Jing, L. Q.; Cui, H. C.; Zhou, J.; Fu, H. G. J. Inorg. Mater. 2009, 24 (2), 229.
[康传红, 郭桐, 井立强, 崔虎成, 周佳, 付宏刚, 无机材料学报, 2009, 24 (2), 229.]
(6) Liu, Z. H.; Su, X. J.; Hou, G. L. J. Inorg. Mater. 2010, 25 (9), 911.
[刘朝辉, 苏勋家, 侯根良. 无机材料学报, 2010, 25 (9), 911.]
(7) Wang, G. P.; Qiu,W.; Ren, C. J.; Chai, J. J.; Dong,W.; Chen, Y. Q.; Gong, M. C. Chin. J. Catal. 2009, 30 (9), 913.
[王光平, 仇伟, 任成军, 柴军军, 董伟, 陈耀强, 龚茂初. 催化学报, 2009, 30 (9), 913.]
(8) Wang, E. J.; Yang, Y. H.; Cao, Y. A. Acta Chim. Sin. 2009, 67 (24), 2759.
[王恩君, 杨辉云, 曹亚安. 化学学报, 2009, 67 (24), 2759.]
(9) Yang, C. S.;Wang, Y. J.; Shih, M. S.; Chang, Y. T.; Hon, C. C. Appl. Catal. A: Gen. 2009, 364, 182.
(10) Huang,W. P.; Tang, X. H.;Wang,Y. Q.; Koltypin,Y.; Gedanken, A. Chem. Commun. 2000, 1415.
(11) Pottier, A.; Chanéac, C.; Tronc, E.; Mazerolles, L.; Jolivet, J. P. J. Mater. Chem. 2001, 11, 1116.
(12) Zhang, Y.;Wu, L. Z.; Zeng, Q. H.; Zhi, J. F. J. Phys. Chem. C 2008, 112, 16457.
(13) Yu, J. G.; Su, Y. R.; Cheng, B.; Zhou, M. H. J. Mol. Catal. A: Chem. 2006, 258, 104.
(14) Aguado, J.; van Grieken, R.; López-Mu?oz, M. J.; Marugán, J. Appl. Catal. A: Gen. 2006, 312, 202.
(15) Bai, Y.; Sun, H. Q.; Jin,W. Q. J. Inorg. Mater. 2008, 23 (2), 387.
[柏源, 孙红旗, 金万勤, 无机材料学报, 2008, 23 (2), 387.]
(16) Li, Y.; White, T. J.; Lim, S. H. J. Solid State Chem. 2004, 177, 1372.
(17) Li, Y. Z.; Kim, S. J. J. Phys. Chem. B 2005, 109, 12309.
(18) Yanagisawa, K.; Ovenstone, J. J. Phys. Chem. B 1999, 103, 7781.
(19) Lim, S. H.; Phonthammachai, N.; Pramana, S. S.; White, T. J. Langmuir 2008, 24, 6226.
(20) He, C. X.; Tian, B. Z.; Zhang, J. L. J. Colloid Interface Sci. 2010, 344, 382.
(21) Tobaldi, D. M.; Tucci, A.; Skapin, A. S.; Esposito, L. J. Eur. Ceram. Soc. 2010, 30, 2481.
(22) Dong,W. Y.; Sun, Y. J.; Lee, C.W.; Hua,W. M.; Lu, X. C.; Shi, Y. F.; Zhang, S. C.; Chen, J. M.; Zhao, D. Y. J. Am. Chem. Soc. 2007, 129, 13894.
(23) Cho, K.; Chang, H.; Park, J. H.; Kim, B. G.; Jang, H. D. J. Ind. Eng. Chem. 2008, 14, 860.
(24) Bonelli, B.; Cozzolino, M.; Tesser, R.; Di, Serio M.; Piumetti, M.; Garrone, E.; Santacesaria, E. J. Catal. 2007, 246, 293.
(25) Hou, Y. D.;Wang, X. C.;Wu, L.; Chen, X. F.; Ding, Z. X.; Wang, X. X.; Fu, X. Z. Chemosphere 2008, 72, 414.
(26) Prinetto, F.; Ghiotti, G.; Occhhiuzzi, M.; Indovia, V. J. Phys. Chem. B 1998, 102, 10316.
(27) Marc?, G.; Augugliaro, V.; Rives, V.; Tilley, R. D.; Venezia, A. M. J. Phys. Chem. B 2001, 105, 1033.
(28) Akurati, K. K.; Vital, A.; Dellemann, J. P.; Michalow, K.; Graule, T.; Ferri, D.; Baiker, A. Appl. Catal. B: Environ. 2008, 79, 53.
(29) Onfroy, T.; Clet, G.; Houalla, M. J. Phys. Chem. B 2005, 109, 14588.
(30) Wang, X. C.; Yu, J. C.; Liu P.;Wang, X. X.; Su,W. Y.; Fu, X. Z. J. Photochem. Photobiol. A: Chem. 2006, 179, 339.

[1] LIANG Sisi, SHANG Mengmeng, LIN Jun. Single-Component Luminescent Materials Activated with Mixed-Valence Eu(+2, +3):Designed Synthesis, Luminescent Properties and Mechanisms[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 237-246.
[2] DING Xiaoqin, DING Junjie, LI Dayu, PAN Li, PEI Chengxin. Toxicity Prediction of Organoph Osphorus Chemical Reactivity Compounds Based on Conceptual DFT[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 314-322.
[3] CEDILLO Andrés, CORTONA Pietro. Effect of Pressure on Cesium Iodide Band Gap[J]. Acta Physico-Chimica Sinica, 2018, 34(2): 208-212.
[4] SONG Xue-Jiao, LIU Zhuang. Applications of Nanotechnology for Physical Stimulus-Responsive Cancer Therapies[J]. Acta Physico-Chimica Sinica, 2018, 34(2): 123-139.
[5] GHARA Manas, CHATTARAJ Pratim K. Bonding and Reactivity in RB-AsR Systems (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO):Substituent Effects[J]. Acta Physico-Chimica Sinica, 2018, 34(2): 201-207.
[6] CUI Peng, LIU Hai, YU Xue-Min, XIA Qing, LI Qing-Song. Measurement and Correlation of Liquid-Liquid Equilibrium Data for the Water+Cyclohexanone+Methyl Isobutyl Ketone Ternary System[J]. Acta Physico-Chimica Sinica, 2018, 34(1): 65-72.
[7] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinica, 2018, 34(1): 22-35.
[8] XU Li-Gang, QIU Wei, CHEN Run-Feng, ZHANG Hong-Mei, HUANG Wei. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Physico-Chimica Sinica, 2018, 34(1): 36-48.
[9] LEI Jinglei, PENG Haonan, GAO Feixue. Review on the Excellent Young Scientists Fund by NSFC in the Fields of Physical Chemistry[J]. Acta Physico-Chimica Sinica, 2018, 34(1): 108-112.
[10] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1828-1837.
[11] ZHOU Liang, ZHANG Xue-Hua, LIN Lin, LI Pan, SHAO Kun-Juan, LI Chun-Zhong, HE Tao. Visible-Light Photocatalytic Reduction of CO2 by CoTe Prepared via a Template-Free Hydrothermal Method[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1884-1890.
[12] SONG Chun-Dong, ZHANG Jing, GAO Ying, LU Yuan-Yuan, WANG Fang-Fang. Synthesis Direct Z-Scheme CuS-WO3 Photocatalysts Based on an Element-Reaction Route and Their Photocatalytic Activity[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1891-1897.
[13] SHEN Hai-Bo, JIANG Hao, LIU Yi-Si, HAO Jia-Yu, LI Wen-Zhang, LI Jie. Cobalt@cobalt Carbide Supported on Nitrogen and Sulfur Co-Doped Carbon: an Efficient Non-Precious Metal Electrocatalyst for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1811-1821.
[14] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1822-1827.
[15] WANG Xin-Lei, MA Kui, GUO Li-Hong, DING Tong, CHENG Qing-Peng, TIAN Ye, LI Xin-Gang. Catalytic Performance for Hydrogen Production through Steam Reforming of Dimethyl Ether over Silica Supported Copper Catalysts Synthesized by Ammonia Evaporation Method[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1699-1708.