Please wait a minute...
Acta Phys. -Chim. Sin.  2011, Vol. 27 Issue (06): 1482-1486    DOI: 10.3866/PKU.WHXB20110630
Reduced Graphene Oxide-Modified Bi2WO6 as an Improved Photocatalyst under Visible Light
YING Hong1,2, WANG Zhi-Yong2, GUO Zheng-Duo2, SHI Zu-Jin2, YANG Shang-Feng1
1. Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China;
2. Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
Download:   PDF(655KB) Export: BibTeX | EndNote (RIS)      


A new and improved photocatalyst, reduced graphene oxide (RGO)-modified Bi2WO6 (Bi2WO6-RGO), was synthesized by a two-step hydrothermal process. The effect of RGO content on photoactivity was investigated and the optimum mass ratio of RGO to Bi2WO6 was determined to be 1%. Based on scanning electron microscopic study, RGO does not change the structure and morphology of the Bi2WO6 photocatalyst. Therefore, the improvement in the photoactivity of the Bi2WO6-RGO composite is undoubtedly ascribed to RGO. The presence of graphene can facilitate the dissociation of photogenerated excitons, which leads to more O2·- to degrade dye pollutants like rhodamine-B (RhB). Moreover, the efficient adsorption of RhB molecules on graphene is another reason for the improved photoactivity.

Key wordsBi2WO6      Graphene      Hydrothermal process      Photocatalyst      Dye pollutant     
Received: 18 January 2011      Published: 09 May 2011
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (20771010, 20801052), National Key Basic Research Program of China (973) (2011CB932601), National High Technology Research and Development Program of China (863) (2007AA03Z311), and “100 Talents Program of Chinese Academy of Sciences” (A1010).

Corresponding Authors: SHI Zu-Jin, YANG Shang-Feng     E-mail:;
Cite this article:

YING Hong, WANG Zhi-Yong, GUO Zheng-Duo, SHI Zu-Jin, YANG Shang-Feng. Reduced Graphene Oxide-Modified Bi2WO6 as an Improved Photocatalyst under Visible Light. Acta Phys. -Chim. Sin., 2011, 27(06): 1482-1486.

URL:     OR

(1) Hoffmann, M. R.; Martin, S. T.; Choi,W. Y.; Bahnemannt, D. W. Chem. Rev. 1995, 95, 69.
(2) Raffainer, I. I.; von Rudolf, R. P. Ind. Eng. Chem. Res. 2001, 40, 1083.
(3) Agrios, A. G.; Pichat, P. J. Appl. Electrochem. 2005, 35, 655.
(4) Kudo, A.; Hijii, S. Chem. Lett. 1999, 28, 1103.
(5) Tang, J.W.; Zou, Z. G.; Ye, J. H. Catal. Lett. 2004, 92, 53.
(6) Zhang, C.; Zhu, Y. F. Chem. Mater. 2005, 17, 3537.
(7) Kudo, A.; Omori, K.; Kato, H. J. Am. Chem. Soc. 1999, 121, 11459.
(8) Tang, J.W.; Zou, Z. G.; Ye, J. H. Chem. Mater. 2004, 16, 1644.
(9) Zhang, L. S.;Wang,W. Z.; Zhou, L.; Xu, H. L. Small 2007, 3, 1618.
(10) Lin, X. P.; Huang, T.; Huang, F. Q.;Wang,W. D.; Shi, J. L. J. Mater. Chem. 2007, 17, 2145.
(11) Zhu, S. B.; Xu, T. G.; Fu, H. B.; Zhao, J. C.; Zhu, Y. F. Environ. Sci. Technol. 2007, 41, 6234.
(12) Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yu, J. G. Dalton Trans. 2010, 39, 3420.
(13) Kamat, P. V. J. Phys. Chem. Lett. 2010, 1, 520.
(14) McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud?homme, R. K.; Aksay, I. A. Chem. Mater. 2007, 19, 4396.
(15) Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308.
(16) Hontoria-Lucas, C.; Lopez-Peinado, A. J.; Lopez-Gonzaiez, J. D.; Rojas-Cerantes, M. L.; Martin-Aranda, R. M. Carbon 1995, 33, 1585.
(17) Zhang, H.; Lv, X. J.; Li, Y. M.;Wang, Y.; Li, J. H. ACS Nano 2009, 4, 380.
(18) Xiong, Z. G.; Zhang, L. L.; Ma, J. Z.; Zhao, X. S. Chem. Commun. 2010, 46, 6099.
(19) Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R. J. Phys. Chem. Lett. 2010, 1, 2607.
(20) Gao, E. P.;Wang,W. Z.; Shang, M.; Xu, J. H. Phys. Chem. Chem. Phys. 2011, 13, 2887.
(21) Li, Y. Y.; Liu, J. P.; Huang, X. T. Nanoscale Res. Lett. 2008, 3, 365.
(22) Williams, G.; Seger, B.; Kamat, P. V. ACS Nano 2008, 2, 1487.
(23) Zhang, L.;Wang,W. Z.; Shang, M.; Sun, S. M.; Xu, J. H. J. Hazard. Mater. 2009, 172, 1193.

[1] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[2] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[3] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[4] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[5] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[6] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[7] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[8] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[9] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[10] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[11] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 520-529.
[12] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[13] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2542-2549.
[14] Quan QUAN,Shun-Ji XIE,Ye WANG,Yi-Jun XU. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2404-2423.
[15] Yun-Long ZHANG,Yu-Zhi ZHANG,Li-Xin SONG,Yun-Feng GUO,Ling-Nan WU,Tao ZHANG. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2284-2292.