Please wait a minute...
Acta Phys. -Chim. Sin.  2011, Vol. 27 Issue (06): 1431-1438    DOI: 10.3866/PKU.WHXB20110634
Capacitive Performance of Tunable Ordered Mesoporous Carbons in Organic and H2SO4 Electrolytes
ZHOU Jin, LI Wen, XING Wei, ZHUO Shu-Ping
School of Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong Province, P. R. China
Download:   PDF(1103KB) Export: BibTeX | EndNote (RIS)      


Ordered mesoporous carbon materials were prepared by doping boric acid using a hard- templating method. The capacitive performance of these carbons was investigated in organic and H2SO4 electrolytes. As demonstrated by structure analysis the prepared carbons possessed parallel mesoporous channels. The pore size increased from 3.3 to 5.7 nm and the molar fraction of oxygenated groups on the carbon surface increased from 2.0% to 5.2% with an increase in the amount of boric acid doping from 0 to 50% (molar fraction). In the organic electrolyte, the carbons mainly showed typical electric double layer capacitive performance and no visible pseudo-capacitance was induced. In H2SO4 electrolytes, BOMC-5 showed the highest specific mass capacitance of 140.9 F·g-1 and the specific surface capacitance of the prepared carbons increased with an increase in the oxygenated groups and this carbon showed visible pseudo-capacitance because of the rapid redox reactions of the oxygenated groups. The capacitance retention ratio depends on the surface chemical properties, which determines the wettability of the carbon surface and the electrolytes.

Key wordsOrdered mesoporous carbon      Organic electrolyte      H2SO4 electrolyte      Supercapacitor      Surface chemical property     
Received: 28 March 2011      Published: 10 May 2011
MSC2000:  O646  

The project was supported by the Outstanding Young Scientist Foundation of Shandong Province, China (BS2009NJ014, 2008BS09007).

Corresponding Authors: XING Wei, ZHUO Shu-Ping     E-mail:
Cite this article:

ZHOU Jin, LI Wen, XING Wei, ZHUO Shu-Ping. Capacitive Performance of Tunable Ordered Mesoporous Carbons in Organic and H2SO4 Electrolytes. Acta Phys. -Chim. Sin., 2011, 27(06): 1431-1438.

URL:     OR

(1) Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Chemical Industry Press: Beijing, 2005; translated by Chen, A.,Wu, M. Q., Zhang, X. L., Gao, N.W.
[Conway, B. E. 电化学超级电容器——科学原理及技术应用. 陈艾, 吴孟强, 张绪礼, 高能武, 译. 北京: 化学工业出版社, 2005.]
(2) Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk,W. Nat. Mater. 2005, 4, 366.
(3) Li, L. M.; Liu, E. H.; Li, J.; Yang, Y. J.; Shen, H. J.; Huang, Z. Z.; Xiang, X. X. Acta Phys. -Chim. Sin. 2010, 26, 1521.
[李利民, 刘恩辉, 李剑, 杨艳静, 沈海杰, 黄铮铮, 向晓霞. 物理化学学报, 2010, 26, 1521.]
(4) Ji, Q. Q.; Guo, P. Z.; Zhao. X. S. Acta Phys. -Chim. Sin. 2010, 26, 1254.
[季倩倩, 郭培志, 赵修松. 物理化学学报, 2010, 26, 1254.]
(5) Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157, 11.
(6) Liu, Y. X.; Li, L. X.; Chen, X. H.; Song, H. H. Acta Phys. -Chim. Sin. 2007, 23, 1399.
[刘宇林, 李丽霞, 陈晓红, 宋怀河. 物理化学学报, 2007, 23, 1399.]
(7) Zhou, J.; Yuan, X.; Xing,W.; Si,W.; Zhuo, S. Carbon 2010, 48, 2765.
(8) Li,W.; Zhou, J.; Xing,W.; Zhuo, S. Lü, Y. Acta Phys. -Chim. Sin. 2011, 27, 620.
[李文, 周晋, 邢伟, 禚淑萍, 吕忆民. 物理化学学报, 2011, 27, 620.]
(9) Itoi, H.; Nishihara, H.; Kogure, T.; Kyotani, T. J. Am. Chem. Soc. 2011, 133, 1165.
(10) Kajdos, A.; Kvit, A.; Jones, F.; Jagiello, J. Yushin, G. J. Am. Chem. Soc. 2010, 132, 3252.
(11) Daffos, B.; Taberna, P. L.; Gogosti, Y.; Simon, P. Fuel Cell 2010, 10, 819.
(12) Jin, J.; Tanaka, S.; Egashira, Y.; Nishiyama, N. Carbon 2010, 45, 1985.
(13) Xing,W.; Huang, C. C.; Zhuo, S. P.; Yuan, X.;Wang, G. Q.; Hulicova-Jurcakova, D.; Yan, Z. F.; Lu, G. Q. Carbon 2009, 47, 1715.
(14) Kim,W.; Joo, J. B.; Kim, N.; Oh, S.; Kim, P.; Yi, J. Carbon 2009, 47, 1407.
(15) Fuertes, A. B.; Lota, G.; Centeno, T. A.; Frackowiak, E. Electrochimica Acta 2005, 50, 2799.
(16) Banham, D.; Feng, F.; Burt, J.; Alsrayheen, E.; Birss, V. Carbon 2010, 48, 1056.
(17) Jiang, J.; Gao, Q.; Xia, K.; Hu, J. Microporous Mesoporous Mat. 2009, 118, 28.
(18) Li, L.; Song, H.; Chen, X. Electrochimica Acta 2006, 51, 5715.
(19) Xing,W.; Qiao, S. Z.; Ding, R. G.; Li, F.; Lu, G. Q.; Yan, Z. F.; Cheng, H. M. Carbon 2006, 44, 216.
(20) Wang, D.; Li, F; Fang, H. T.; Liu. M.; Lu, G.; Cheng, H. J. Phys. Chem. B 2006, 110, 8570.
(21) Li, H. Q.; Luo, J.; Zhou, X. F.; Yu, C. Z.; Xia, Y. J. Electrochem. Soc. 2007, 154, A731.
(22) Wang, D.W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. J. Phys. Chem. C 2008, 112, 9950.
(23) Jang, I. Y.; Muramatsu, H.; Park, K. C.; Kim, Y. J.; Endo, M. Electrochem. Commun. 2009, 11, 719.
(24) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
(25) Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 10712.
(26) Wang, D.; Li, F.; Liu, M.; Cheng, H. M. New Carbon Materials 2007, 22, 307.

[1] Xiangyan SHEN,Jianjiang HE,Ning WANG,Changshui HUANG. Graphdiyne for Electrochemical Energy Storage Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1029-1047.
[2] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[3] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[4] Chun-Rong LIAO,Feng XIONG,Xian-Jun LI,Yi-Qiang WU,Yong-Feng LUO. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 329-343.
[5] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 305-313.
[6] Zhao-Yang JIA,Mei-Nan LIU,Xin-Luo ZHAO,Xian-Shu WANG,Zheng-Hui PAN,Yue-Gang ZHANG. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2510-2516.
[7] Dao-Yan LI,Ji-Chen ZHANG,Zhi-Yong WANG,Xian-Bo JIN. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2245-2252.
[8] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1944-1959.
[9] Xue-Qin LI,Lin CHANG,Shen-Long ZHAO,Chang-Long HAO,Chen-Guang LU,Yi-Hua ZHU,Zhi-Yong TANG. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 130-148.
[10] Xiao ZHOU,Min-Qiang SUN,Geng-Chao WANG. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 975-982.
[11] Yong-Fang WANG,Song-Lin ZUO. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 481-492.
[12] You-Cheng LIN,Xin-Xian ZHONG,Han-Xing HUANG,Hong-Qiang WANG,Qi-Peng FENG,Qing-Yu LI. Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 474-480.
[13] Ya-Jie LI,Xing-Yuan NI,Jun SHEN,Dong LIU,Nian-Ping LIU,Xiao-Wei ZHOU. Preparation and Performance of Polypyrrole/Nitric Acid Activated Carbon Aerogel Nanocomposite Materials for Supercapacitors[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 493-502.
[14] LI Zhao-Hui, LI Shi-Jiao, ZHOU Jin, ZHU Ting-Ting, SHEN Hong-Long, ZHUO Shu-Ping. Preparation and Supercapacitive Performance of N, S Co-Doped Activated Carbon Materials[J]. Acta Phys. -Chim. Sin., 2015, 31(4): 676-684.
[15] LI Yang, XIE Hua-Qing, LI Jing. Hydrothermal Synthesis of Al-Doped α-MnO2 Nanotubes and Their Electrochemical Performance for Supercapacitors[J]. Acta Phys. -Chim. Sin., 2015, 31(4): 693-699.