Please wait a minute...
Acta Phys. -Chim. Sin.  2011, Vol. 27 Issue (07): 1551-1559    DOI: 10.3866/PKU.WHXB20110710
Chemical Lithiation and Electroactivity of Nanomaterials
MAI Li-Qiang1,2, YANG Shuang1, HAN Chun-Hua1, XU Lin1, XU Xu1, PI Yu-Qiang1
1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, WUT-Harvard Joint Nano Key Laboratory, Wuhan University of Technology, Wuhan 430070, P. R. China;
2. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
Download:   PDF(1640KB) Export: BibTeX | EndNote (RIS)      


High capacity and good cycling stability of the electrode materials are the key points to develop high-performance lithium ion battery. Based on the latest research over the world, especilly from our group, in this paper we summarized the progress in chemical lithiation and electroactivity of nanomaterials. Firstly, we introduced the preparation of high capacity nanomaterials (molybdenum oxide, vanadium oxides, selenium hydrates, etc) and the chemical problems in lithiation process. Then we summed up the progress in assembly, chemical lithiation and electroactivity of single nanowire devices and nanowire lithium ion battery. Finally, we pointed out that assembly of single nanowire (nanobelts, nanotubes, etc.) device, in situ probe of lithium ion transport, design and construction of ordered array and complex structure, investigation of lithiation mechanism, electrostatic coupling, interface interaction, etc. are effective methods to deeper exploration of the relationship between chemical lithiation and electroactivity of nanomaterials and main directions of nanoscale lithium ion battery research field.

Key wordsLithium ion battery      Electrochemistry      Nanomaterials      Chemical lithiation      Nanodevice     
Received: 09 February 2011      Published: 19 May 2011
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (50702039, 51072153), Program for New Century Excellent Talents in Universities of the Ministry of Education of China (NCET-10-0661) and Fundamental Research Funds for the Central Universities (2010-II-016).

Corresponding Authors: MAI Li-Qiang     E-mail:,
Cite this article:

MAI Li-Qiang, YANG Shuang, HAN Chun-Hua, XU Lin, XU Xu, PI Yu-Qiang. Chemical Lithiation and Electroactivity of Nanomaterials. Acta Phys. -Chim. Sin., 2011, 27(07): 1551-1559.

URL:     OR

(1) Goodenough, J. B. J. Power Sources 2007, 174, 996.  
(2) Ma, M.; Chernova, N. A.; Toby, B. H.; Zavalij, P. Y.; Whittingham, M. S. J. Power Sources 2007, 165, 517.  
(3) Ji, X.; Lee, T.; Nazar, L. F. Nat. Mater. 2009, 8, 500.  
(4) Lee, Y.; Kim, M. G.; Cho, J. Nano Lett. 2008, 8, 957.  
(5) Huang, X. H.; Tu, J. P.; Xia, X. H.;Wang, X. L.; Xiang, J. Y. Electrochem. Commun. 2008, 10, 1288.  
(6) Doherty, C. M.; Caruso, R. A.; Smarsly, B. M.; Adelhelm, P.; Drummond, C. J. Chem. Mater. 2009, 21, 5300.  
(7) Mai, L. Q.; Dong, Y. J.; Xu, L.; Han, C. H. Nano Lett. 2010, 10, 4273.  
(8) Johnson, C. S.; Dees, D.W.; Mansuetto, M. F.; Thackeray, M. M.; Vissers, D. R. J. Power Sources 1997, 68, 570.  
(9) Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. A.; Raffaelle, R. P. Energy Environ. Sci. 2009, 2, 638.  
(10) Zhang, Z.; Yang, J.; Nuli, Y.;Wang, B.; Xu, J. Solid State Ionics 2005, 176, 693.  
(11) Seong, I.W.; Kim, K. T.; Yoon,W. Y. J. Power Sources 2009, 189, 511.  
(12) Tian, B.; Cohen-Karni, T.; Qing, Q.; Duan, X.; Xie, P.; Lieber, C. M. Science 2010, 329, 830.  
(13) Huang, J. Y.; Zhong, L.;Wang, C. M.; Sullivan, J. P.; Xu,W.; Zhang, L. Q.; Mao, S.; Hudak, N.; Liu, X. H.; Subramanian, A. K.; Fan, H.; Qi, L.; Kushima, A.; Li, J. Science 2010, 330, 1515.  
(14) Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M. Nature 2007, 449, 885.  
(15) Dong, Y. J.; Yu, G. H.; McAlpine, M. C.; Lu,W.; Lieber, C. M. Nano Lett. 2008, 8, 386.  
(16) Kempa, T. J.; Tian, B. Z.; Kim, D. R.; Hu, J. S.; Zheng, X. L.; Lieber, C. M. Nano Lett. 2008, 8, 3456.  
(17) Yang, Y.; Xie, C.; Ruffo, R.; Peng, H. L.; Kim, D. K.; Cui, Y. Nano Lett. 2009, 9, 4109.  
(18) Schoen, D. T.; Peng, H. L.; Cui, Y. J. Am. Chem. Soc. 2009, 131, 7973.  
(19) Cha, J. J.;Williams, J. R.; Kong, D. S.; Meister, S.; Peng, H. L.; Bestwick, A. J.; Gallagher, P.; Gordon, D. G.; Cui, Y. Nano Lett. 2010, 10, 1076.  
(20) Hu, Y. F.; Chang, Y. L.; Fei, P.; Snyder, R. L.;Wang, Z. L. ACS Nano 2010, 4 (2), 1234.
(21) Xu, S.; Qin, Y.; Xu, C.;Wei, Y. G.; Yang, R. S.;Wang, Z. L. Nat. Nanotechnol. 2010, 5, 366.  
(22) Baik, J. M.; Kim, M. H.; Larson, C.; Yavuz, C. T.; Stucky, G. D.;Wodtke, A. M.; Martin, M. Nano Lett. 2009, 9, 3980.  
(23) Tian, B.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Nat. Nanotechnol. 2009, 4, 824.  
(24) Wang, C. M.; Xu,W.; Liu, J.; Choi, D.; Arey, B.W.; Saraf, L. V.; Zhang, J.; Yang, Z.; Thevuthasan, S.; Baer, D. R.; Salmon, N. J. Mater. Res. 2010, 25, 1541.  
(25) Xue, X. Y.; Feng, P.;Wang, C.; Chen, Y. J.;Wang, Y. G.;Wang, T. H. Appl. Phys. Lett. 2006, 89, 022115.  
(26) Schoe, D. T.; Xie, C.; Cui, Y. J. Am. Chem. Soc. 2007, 129, 4116.  
(27) Mai, L. Q.; Chen,W.; Xu, Q.; Zhu, Q. Y.; Han, C. H.; Peng, J. F.; Solid State Commun. 2003, 126, 541.  
(28) Qi, Y. Y.; Chen,W.; Mai, L. Q.; Zhu, Q. Y.; Jin, A. P. Int. J. Electrochem. Sci. 2006, 1, 317.
(29) Chen,W.; Mai, L. Q.; Qi, Y. Y.; Dai, Y. J. Phys. Chem. Solids 2006, 67, 896.  
(30) Chernova, N. A.; Roppolo, M.; Dillon, A. C.; Whittingham, M. S. J. Mater. Chem. 2009, 19(17), 2526.
(31) Nazar, L. F.; Koene, B. E.; Britten, J. F. Chem. Mater. 1996, 8, 327.  
(32) Whittingham, M. S. Chem. Rev. 2004, 104, 4271.  
(33) Ban, C.; Chernova, N. A.; Whittingham, M. S. Electrochem. Commun. 2009, 11, 522.  
(34) Mai, L. Q.; Chen,W.; Xu, Q.; Zhu, Q. Y. Microelectron Eng. 2003, 66, 199.  
(35) Mai, L. Q.; Chen,W.; Xu, Q.; Zhu, Q. Y. Chem. Phys. Lett. 2003, 382, 307.  
(36) Mai, L. Q.; Chen,W.; Qi, Y. Y.; Dai, Y.; Jin,W. Solid State Phenomena 2007, 121-123, 789.
(37) Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. Nat. Nanotechnol. 2008, 3, 31.  
(38) Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. Nano Lett. 2009, 9, 1045.
(39) Chan, C. K.; Zhang, X. F.; Cui, Y. Nano Lett. 2008, 8, 307.  
(40) Mai, L. Q.; Hu, B.; Chen,W.; Qi, Y. Y.; Lao, C. S.; Yang, R. S.; Dai, Y.;Wang, Z. L. Adv. Mater. 2007, 19, 3712.  
(41) Mai, L. Q.; Hu, B.; Qi, Y. Y.; Dai, Y.; Chen,W. Int. J. Electrochem. Sci. 2008, 3, 216.
(42) Mai, L. Q.; Gao, Y.; Guan, J. G.; Hu, B.; Xu, L.; Jin,W. Int. J. Electrochem. Sci. 2009, 4, 755.
(43) Mai, L. Q.; Lao, C. S.; Hu, B.; Zhou, J.; Qi, Y. Y.; Chen,W.; Gu, E. D.;Wang, Z. L. J. Phys. Chem. B 2006, 110, 18138.  
(44) Mai, L. Q.; Guo,W. L.; Hu, B.; Jin,W.; Chen,W. J. Phys. Chem. C 2008, 112, 423.
(45) Chen,W.; Mai, L. Q.; Qi, Y. Y.; Jin,W.; Hu, T.; Guo,W. L.; Dai, Y.; Gu, E. D. Key Eng. Mater. 2007, 336-338, 2128.
(46) Zheng, L.; Xu, Y.; Jin, D.; Xie, Y. Chem. Mater. 2009, 21, 5681.  
(47) Whittingham, M. S.; Dines, M. B. J. Electrochem. Soc. 1977, 124, 1387.  
(48) Murphya, D.W.; Greenblatt, M.; Cava, R. J.; Zahurak, S. M. Solid State Ionics 1981, 5, 327.  
(49) Li, L.; Pistoia, G. Solid State Ionics 1991, 47, 231.  
(50) Li, L.; Pistoia, G. Solid State Ionics 1991, 47, 241.  
(51) Jung,W. I.; Nagao, M.; Pitteloud, C.; Yamada, A.; Kann, R. J. Power Sources 2010, 195, 3328.  
(52) Wang, S. T.; Zhang, Y. G.; Ma, X. C.;Wang,W. Z.; Li, X. B.; Zhang, Z. D.; Qian, Y. T. Solid State Commun. 2005, 136, 283.  
(53) Bullard, J.W.; Smith, R. L. Solid State Ionics 2003, 160, 335.  
(54) Chen,W.; Qi, Y. Y.; Mai, L. Q.; Xu, Q.; Liu, H. X.; Zhao, X. J. Hydrothermal Synthesis and Electrochemical Behavior of MoO3 Nanobelts for Lithium Batteries. In Proceedings of the 10th Asian conference on Solid State Ionics, the 10th Asian conference on Solid State Ionics, Sri Lanka, Jun12-16, 2006; Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.; Eds.;World Scientific Publishing: Singapore, 2006; pp: 833-840.
(55) Tsumura, T.; Inagaki, M. Solid State Ionics 1997, 104, 183.  
(56) Subba, R. C.; Qi, Y.; Jin,W.; Zhu, Q.; Deng, Z.; Chen,W.; Mho, S. J. Solid State Electrochem. 2007, 11, 1239.  
(57) Subba, R. C.;Walker, E. H., Jr.;Wen, C.; Mho, S. J. Power Sources 2008, 183, 330.
(58) Christian, P. A.; Carides, J. N.; DiSalvo, F. J.;Waszczak, J. V. J. Electrochem. Soc. 1980, 127, 2315.  
(59) Chan, C. K.; Peng, H.; Twesten, R. D.; Jarausch, K.; Zhang, X. F.; Cui, Y. Nano Lett. 2007, 7(2), 490.
(60) Delmasa, C.; Cognac-Auradoua, H.; Cocciantellia, J. M.; Menetriera, M.; Doumerca, J. P. Solid State Ionics 1994, 69, 257.
(61) Garcia, B.; Millet, M.; Pereira-Ramos, J. P.; Baffier, N.; Bloch, D. J. Power Sources 1999, 81-82, 670.
(62) Lee, S. H.; Kim, Y. H.; Deshpande, R.; Parilla, P. A.; Whitney, E.; Gillaspie, D. T.; Jones, K. M.; Mahan, A.; Zhang, S.; Dillon, A. C. Adv. Mater. 2008, 20 (19), 3627.
(63) Huang, Y. H.; Goodenough, J. B. Chem. Mater. 2008, 20, 7237.  
(64) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.  
(65) Chen, J.; Vacchio, M. J.;Wang, S.; Chernova, N.; Zavalij, P. Y.; Whittingham, M. S. Solid State Ionics 2008, 178, 1676.  
(66) Mai, L. Q.; Xu, L.; Han, C. H.; Xu, X.; Luo, Y. Z.; Zhao, S. Y.; Zhao, Y. L. Nano Lett. 2010, 10, 4750.  
(67) Balke, N.; Jesse, S.; Morozovska, A. N.; Eliseev, E.; Chung, D. W.; Kim, Y.; Adamczyk, L.; García, R. E.; Dudney, N.; Kalinin, S. V. Nat. Nanotechnol. 2010, 5, 749.  
(68) Brezesinski, T.;Wang, J.; Tolbert, S. H.; Dunn, B. Nat. Mater. 2010, 9, 146.  
(69) Hu, Y. S.; Liu, X.; Müller, J. O.; Schlögl, R.; Maier, J.; Su, D. S. Chem. Int. Edit. 2009, 48, 210.

[1] Yanhuan CHEN,Jiaofu LI,Huibiao LIU. Preparation of Graphdiyne-Organic Conjugated Molecular Composite Materials for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1074-1079.
[2] Xi CHEN,Shengli ZHANG. Modulation of Molecular Sensing Properties of Graphdiyne Based on 3d Impurities[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1061-1073.
[3] Chunhe YANG,Aiwei TANG,Feng TENG,Kejian JIANG. Electrochemistry of Perovskite CH3NH3PbI3 Crystals[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1197-1201.
[4] Yi-Fan RUAN,Nan ZHANG,Yuan-Cheng ZHU,Wei-Wei ZHAO,Jing-Juan XU,Hong-Yuan CHEN. New Developments in Photoelectrochemical Bioanalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 476-485.
[5] Wan-Long LI,Yue-Jiao LI,Mei-Ling CAO,Wei QU,Wen-Jie QU,Shi CHEN,Ren-Jie CHEN,Feng WU. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2261-2267.
[6] Ya-Dong LI,Yu-Feng DENG,Zhi-Yi PAN,Yin-Ping WEI,Shi-Xi ZHAO,Lin GAN. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2293-2300.
[7] Wei-Xin SONG,Hong-Shuai HOU,Xiao-Bo JI. Progress in the Investigation and Application of Na3V2(PO4)3 for Electrochemical Energy Storage[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 103-129.
[8] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2287-2292.
[9] Lin LIU,Zhi-Sheng LI,Hui-Dong HU,Wei-Li SONG. Insight into Macroscopic Metal-Assisted Chemical Etching for Silicon Nanowires[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 1019-1028.
[10] Jing-Mei LÜ,Xuan CHENG. Electrochemical Behavior of Porous and Flat Silicon Electrode Interfaces[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 711-716.
[11] Ting LI,Zhi-Hui LONG,Dao-Hong ZHANG. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 573-580.
[12] Shou-Pu ZHU,Tian WU,Hai-Ming SU,Shan-Shan QU,Yong-Juan XIE,Ming CHEN,Guo-Wang DIAO. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2737-2744.
[13] Juan XU,Jia-Qin LIU,Jing-Wei LI,Yan WANG,Jun Lü,Yu-Cheng WU. Controlled Synthesis and Supercapacitive Performance of Heterostructured MnO2/H-TiO2 Nanotube Arrays[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2545-2554.
[14] Jia-Xu LIANG,Zhi-Chang XIAO,Lin-Jie ZHI. Graphenal Polymers: 3D Carbon-Rich Polymers as Energy Materials with Electronic and Ionic Transport Pathways[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2390-2398.
[15] Qing-Gong ZHU,Xiao-Fu SUN,Xin-Chen KANG,Jun MA,Qing-Li QIAN,Bu-Xing HAN. Cu2S on Cu Foam as Highly Efficient Electrocatalyst for Reduction of CO2 to Formic Acid[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 261-266.