Please wait a minute...
Acta Physico-Chimica Sinica  2011, Vol. 27 Issue (07): 1743-1750    DOI: 10.3866/PKU.WHXB20110711
CATALYSIS AND SURFACE SCIENCE     
Fabrication of Mesoporous NiAl2O4 Nanorods and Their Catalytic Properties for Toluene Hydrocracking
SHEN Shan-Shan, LU Wen-Cong, ZHANG Liang-Miao, YUE Bao-Hua, HAN Ling, ZHANG Hao
Department of Chemistry, Shanghai University, Shanghai 200444, P. R. China
Download:   PDF(909KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Mesoporous single-crystalline NiAl2O4 nanorods were successfully synthesized by a one-step hydrothermal method using a pore-forming agent (NH4HCO3). A series of controlled experiments were also carried out to better understand the formation mechanism of NiAl2O4 nanorods. The experimental results indicate that the reaction time, reactant concentration and the amount of NH4HCO3 play an important role in determining the morphology. The morphology, structure and composition of the nanorods were investigated using transmission electron microscopy, high resolution transmission electron microscopy, scanning electron microscopy and X-ray diffraction. The specific surface area and pore-size distribution of the obtained product was determined by nitrogen adsorption-desorption measurements. NiAl2O4 nanorods have a high Brunauer-Emmett-Teller surface area and good porosity properties. The catalytic performance of the NiAl2O4 nanorods during toluene hydrocracking was investigated using a fixed bed reactor. After the toluene catalytic reactions over 400 min at a water stream/carbon molar ratio (H2O/C) of 1.0 with a reaction temperature of 700 ℃ the average conversion efficiency of toluene was about 86.5%. Compared to the NiAl2O4 nanoparticles prepared by alkaline precipitation, the mesoporous NiAl2O4 nanorods exhibited higher catalytic activity and stability during toluene hydrocracking. A possible formation mechanism for the mesoporous NiAl2O4 nanorods is proposed and discussed.



Key wordsHydrothermal method      Single-crystalline NiAl2O4      NH4HCO3      Nickel catalyst      Characterization     
Received: 23 February 2011      Published: 19 May 2011
MSC2000:  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (20973108), Shanghai Education Committee, China (11ZZ83), Shanghai Leading Academic Discipline Project, China (J50101), and Innovation Fund of Shanghai University, China (A.10-0101-09-023).

Corresponding Authors: LU Wen-Cong     E-mail: wclu@shu.edu.cn
Cite this article:

SHEN Shan-Shan, LU Wen-Cong, ZHANG Liang-Miao, YUE Bao-Hua, HAN Ling, ZHANG Hao. Fabrication of Mesoporous NiAl2O4 Nanorods and Their Catalytic Properties for Toluene Hydrocracking. Acta Physico-Chimica Sinica, 2011, 27(07): 1743-1750.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20110711     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I07/1743

(1) Buffoni, I. N.; Pompeo, F.; Santori, G. F.; Nichio, N. N. Catalysis Communications 2009, 10, 1656.  
(2) Wu, M. X.; Li,W.; Zhang, M. H.; Tao, K. Y. Acta Physico-Chimica Sinica 2007, 23, 1311. [武美霞, 李伟, 张明慧, 陶克毅. 物理化学学报, 2007, 23, 1311.]
(3) Seo, J. G.; Youn, M. H.; Song, I. K. Catalysis Surveys from Asia 2010, 14, 1.  
(4) Yolcular, S.; Olgun, O. Catalysis Today 2008, 138, 198.  
(5) Muroyama, H.; Nakase, R.; Matsui, T.; Eguchi, K. International Journal of Hydrogen Energy 2010, 35, 1575.
(6) Valentini, A.; Carre?o, N. L. V.; Probst, L. F. D.; Leite, E. R.; Longo, E. Microporous and Mesoporous Materials 2004, 68, 151.  
(7) Sivaiah, M. V.; Petit, S.; Beaufort, M. F.; Eyidi, D.; Barrault, J.; Batiot-Dupeyrat, C.; Valange, S. Microporous and Mesoporous Materials, 2011, 140, 69.  
(8) Popov, A. G.; Smirnov, A. V.; Knyazeva, E. E.; Yuschenko, V. V.; Kalistratova, E. A.; Klementiev, K. V.; Grünert,W.; Ivanova, I. I. Microporous and Mesoporous Materials 2010, 134, 124.  
(9) Yue, B.;Wang, X.; Ai, X.; Yang, J.; Li, L.; Lu, X.; Ding,W. Fuel Processing Technology 2010, 91, 1098.  
(10) Cheng, H.W.; Zhang, Y.W.; Lu, X. G.; Ding,W. Z.; Li, Q. Energy & Fuels 2009, 23, 414.  
(11) Song, X. C.; Zheng, Y. F.; Lin, S.;Wang, Y. Acta Physico-Chimica Sinica 2007, 23, 258. [宋旭春, 郑遗凡, 林深, 王芸. 物理化学学报, 2007, 23, 258.]
(12) Chen, A. M.; Xu, S. F.; Ni, Z. M. Acta Physico-Chimica Sinica 2009, 25, 2570. [陈爱民, 徐淑芬, 倪哲明. 物理化学学报, 2009, 25, 2570.]
(13) Chen, J. H.; Xue, C. S.; Zhuang, H. Z.; Li, H.; Qin, L. X.; Yang, Z. Z. Acta Physico-Chimica Sinica 2008, 24, 355. [陈金华, 薛成山, 庄惠照, 李红, 秦丽霞, 杨兆柱. 物理化学学报, 2008, 24, 355.]
(14) Vijaya, J. J.; Kennedy, L. J.; Sekaran, G.; Nagaraja, K. S. Materials Letters 2007, 61, 5213.  
(15) Amini, M. M.; Torkian, L. Materials Letters 2002, 57, 639.  
(16) Pettit, F. S.; Randklev, E. H.; Felten, E. J. Journal of the American Ceramic Society 1966, 49, 199.
(17) Platero, E. E.; Arean, C. O.; Parra, J. B. Research on Chemical Intermediates 1999, 25, 187.
(18) Zangouei, M.; Moghaddam, A. Z.; Razeghi, A.; Omidkhah, M. R. International Journal of Chemical Reactor Engineering 2010, 8, S1.
(19) Yung, M. M.; Magrini-Bair, K. A.; Parent, Y. O.; Carpenter, D. L.; Feik, C. J.; Gaston, K. R.; Pomeroy, M. D.; Phillips, S. D. Catalysis Letters 2010, 134, 242.  
(20) Gama, L.; Ribeiro, M. A.; Barros, B. S.; Kiminami, R. H. A.; Weber, I. T.; Costa, A. C. F. M. Journal of Alloys and Compounds 2009, 483, 453.  
(21) Nogueira, N. A. S.; da Silva, E. B.; Jardim, P. M.; Sasaki, J. M. Materials Letters 2007, 61, 4743.  
(22) Kanthimathi, M.; Dhathathreyan, A.; Nair, B. Materials Letters 2004, 58, 2914.  
(23) Velu, S.; Shah, N.; Jyothi, T. M.; Sivasanker, S. Microporous and Mesoporous Materials 1999, 33, 61.  
(24) Kim, H.W.; Kang, K. M.; Kwak, H. Y. International Journal of Hydrogen Energy 2009, 34, 3351.
(25) Romero, A.; Jobbagy, M.; Laborde, M.; Baronetti, G.; Amadeo, N. Catalysis Today 2010, 149, 407.  
(26) Voorhees, P. Journal of Statistical Physics 1985, 38, 231.  
(27) Zhao, Z.; Zhang, L.; Dai, H.; Du, Y.; Meng, X.; Zhang, R.; Liu, Y.; Deng, J. Microporous and Mesoporous Materials 2011, 138, 191.  
(28) Whitesides, G.; Mathias, J.; Seto, C. Science 1991, 254, 1312.  
(29) Zhang, L.; Lu,W.; Yan, L.; Feng, Y.; Bao, X.; Ni, J.; Shang, X.; Lv, Y. Microporous and Mesoporous Materials 2009, 119, 208.  
(30) Liu, J.; Harris, A. T. AICHE Journal 2010, 56, 102.
(31) Zhang, S. M.; Zeng, H. C. Chemistry of Materials 2009, 21, 871.  
(32) Mavis, B.; Akinc, M. Chemistry of Materials 2006, 18, 5317.  
(33) Osaki, T.; Horiuchi, T.; Sugiyama, T.; Suzuki, K.; Mori, T. Catalysis Letters 1998, 52, 171.  
(34) Saadi, A.; Merabiti, R.; Rassoul, Z.; Bettahar, M. M. Journal of Molecular Catalysis A-Chemical 2006, 253, 79.
(35) Zhao, J.; He, X.;Wang, L.; Tian, J.;Wan, C.; Jiang, C. International Journal of Hydrogen Energy 2007, 32, 380.  
(36) Oyama, S. T.; Lee, Y. K. Journal of Catalysis 2008, 258, 393.  
(37) Shigarov, A. B.; Kireenkov, V. V.; Kuzmin, V. A.; Kuzin, N. A.; Kirillov, V. A. Catalysis Today 2009, 144, 341.  

[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Physico-Chimica Sinica, 2018, 34(2): 168-176.
[2] GAO Xiao-Ping, GUO Zhang-Long, ZHOU Ya-Nan, JING Fang-Li, CHU Wei. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 602-610.
[3] LI Shen-Hui, LI Jing, ZHENG An-Min, DENG Feng. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 270-282.
[4] ZHU Jin-Xiao, LIU Xiao-Dong, XUE Min-Zhao, CHEN Chang-Xin. Phosphorene: Synthesis, Structure, Properties and Device Applications[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2153-2172.
[5] LI Bao-Qing, YUAN Wen-Hui, LI Li. Adsorption of Pb2+ and Cd2+ on Graphene Nanosheets Prepared Using Thermal Exfoliation[J]. Acta Physico-Chimica Sinica, 2016, 32(4): 997-1004.
[6] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 551-557.
[7] NIE Wang-Xin, ZOU Xiu-Jing, WANG Xue-Guang, DING Wei-Zhong, LU Xiong-Gang. Preparation of Highly Dispersed Ni-Ce-Zr Oxides over Mesoporous γ-Alumina and Their Catalytic Properties for CO2 Methanation[J]. Acta Physico-Chimica Sinica, 2016, 32(11): 2803-2810.
[8] HU Hai-Feng, HE Tao. Controlled Aspect Ratio Modulation of ZnO Nanorods via Indium Doping[J]. Acta Physico-Chimica Sinica, 2015, 31(7): 1421-1429.
[9] CHEN Yang, ZHANG Zi-Lan, SUI Zhi-Jun, LIU Zhi-Ting, ZHOU Jing-Hong, ZHOU Xing-Gui. Preparation and Electrochemical Performance of Ni(OH)2 Nanowires/ Three-Dimensional Graphene Composite Materials[J]. Acta Physico-Chimica Sinica, 2015, 31(6): 1105-1112.
[10] LI Xiang-Qi, FAN Qing-Fei, LI Guang-Li, HUANG Yao-Han, GAO Zhao, FAN Xi-Mei, ZHANG Chao-Liang, ZHOU Zuo-Wan. Syntheses of ZnO Nano-Arrays and Spike-Shaped CuO/ZnO Heterostructure[J]. Acta Physico-Chimica Sinica, 2015, 31(4): 783-792.
[11] LI Zhi-Guang, MA Xiao-Yan, HONG Qing, GUAN Xing-Hua. Functional Applications of Ordered Honeycomb-Patterned Porous Films Based on the Breath Figure Technique[J]. Acta Physico-Chimica Sinica, 2015, 31(3): 393-411.
[12] ZHANG Yuan-Hang, WANG Zhi-Yuan, SHI Chun-Sheng, LIU En-Zuo, HE Chun-Nian, ZHAO Nai-Qin. Synthesis of Uniform Nickel Oxide Nanoparticles Embedded in Porous Hard Carbon Spheres and Their Application in High Performance Li-Ion Battery Anode Materials[J]. Acta Physico-Chimica Sinica, 2015, 31(2): 268-276.
[13] QI Qi, WANG Yu-Qiao, WANG Sha-Sha, QI Hao-Nan, WEI Tao, SUN Yue-Ming. Preparation of Reduced Graphene Oxide/TiO2 Nanocomposites and Their Photocatalytic Properties[J]. Acta Physico-Chimica Sinica, 2015, 31(12): 2332-2340.
[14] YU Hua-Feng, ZHANG Guo-Pei, HAN Li-Na, CHANG Li-Ping, BAO Wei-Ren, WANG Jian-Cheng. Cu-SSZ-13 Catalyst Synthesized under Microwave Irradiation and Its Performance in Catalytic Removal of NOx from Vehicle Exhaust[J]. Acta Physico-Chimica Sinica, 2015, 31(11): 2165-2173.
[15] XING Jian-Dong, JING Fang-Li, CHU Wei, SUN Hong-Li, YU Lei, ZHANG Huan, LUO Shi-Zhong. Improvement of Adsorptive Separation Performance for C2H4/C2H6 Mixture by CeO2 Promoted CuCl/Activated Carbon Adsorbents[J]. Acta Physico-Chimica Sinica, 2015, 31(11): 2158-2164.