Please wait a minute...
Acta Physico-Chimica Sinica  2011, Vol. 27 Issue (07): 1689-1694    DOI: 10.3866/PKU.WHXB20110712
ELECTROCHEMISTRY AND NEW ENERGY     
Performance Improvement of Polyethylene-Supported PAMS Electrolyte Using Urea as Foaming Agent
CHEN Lang1, RAO Mu-Min1, LI Wei-Shan1,2,3, XU Meng-Qing1,2,3, LIAO You-Hao1, TAN Chun-Lin1,2,3, YI Jin1
1. School of Chemistry and Environment, South China Normal University, Guangzhou 510006, P. R. China;
2. Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006, P. R. China;
3. Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (MOE), South China Normal University, Guangzhou 510006, P. R. China
Download:   PDF(702KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Poly(acrylonitrile-methyl methacrylate-styrene) (PAMS) was synthesized by emulsion polymerization and a polyethylene (PE)-supported membrane was prepared using urea as foaming agent (PE-PAMS-U). The structure and performance of the PAMS copolymer, PE-PAMS-U membrane and corresponding gel polymer electrolyte (GPE) were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetry (TG), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and by a charge/discharge test. We found that the performance of the PE-PAMS-U based GPE could be improved when using urea as a foaming agent. With the use of urea the pore size of the membrane becomes uniform, the ionic conductivity of the GPE improves from 1.1×10-3 to 2.15×10-3 S·cm-1 at room temperature and the interfacial resistance between the GPE and lithium is reduced from 480 to 250 Ω·cm2. The GPE is stable up to 5.0 V (vs Li/Li+) at room temperature and the battery made using the Li/PE-supported GPE/LiCoO2 shows a good rate and good cycle performance.



Key wordsLithium ion battery      Gel polymer electrolyte      Poly((acrylonitrile-methyl methacrylate-styrene)      Urea      Foaming agent     
Received: 18 January 2011      Published: 20 May 2011
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (20873046) and Natural Science Foundation of Guangdong Province, China (10351063101000001).

Corresponding Authors: LI Wei-Shan     E-mail: liwsh@scnu.edu.cn
Cite this article:

CHEN Lang, RAO Mu-Min, LI Wei-Shan, XU Meng-Qing, LIAO You-Hao, TAN Chun-Lin, YI Jin. Performance Improvement of Polyethylene-Supported PAMS Electrolyte Using Urea as Foaming Agent. Acta Physico-Chimica Sinica, 2011, 27(07): 1689-1694.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20110712     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I07/1689

(1) Liao, Y. H.; Zhou, D. Y.; Rao, M. M.; Li,W. S.; Cai, Z. P.; Liang, Y.; Tan, C. L. J. Power Sources 2009, 189, 139.  
(2) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.  
(3) Subba, C. V. R.;Wu, G. P.; Zhao, C. X.; Zhu, Q. Y.; Chen,W.; Kalluru Rajamohan, R. J. Non-Cryst. Solids 2007, 353, 440.  
(4) Sundaram, N. T. K.; Subramania, A. J. Membr. Sci. 2007, 289, 1.  
(5) Zuo, X. X.; Xu, M. Q.; Li,W. S.; Su, D. G.; Liu, J. S. Electrochem. Solid-State Lett. 2006, 9, A196.
(6) Jeon, J. D.; Kim, M. J.; Kwak, S. Y. J. Power Sources 2006, 162, 1304.  
(7) Xie, H.; Tang, Z. Y.; Li, Z. Y.; He, Y. B.; Liu, Y.;Wang, H. J. Solid State Electrochem. 2008, 12, 1497.  
(8) Chen-Yang, Y.W.; Chen, H. C.; Lin, F. J.; Chen, C. C. Solid State Ionics 2002, 150, 327.
(9) Pu,W. H.; He, X. M.;Wang, L.; Tian, Z.; Jiang, C. Y.;Wan, C. R. J. Membr. Sci. 2006, 280, 6.  
(10) Zhang, G. Q.; Ma, L.;Wu, Z. J.; Zhang, H. Y.; Ni, P. Acta Phys. -Chim. Sin. 2009, 25, 555. [张国庆, 马莉, 吴忠杰, 张海燕, 倪佩. 物理化学学报, 2009, 25, 555.]
(11) Ahmad, A.; Rahman, M. Y. A.; Su'ait, M. S. Physica B 2008, 403, 4128.  
(12) Reddy, C. V. S.; Zhu, Q. Y.; Mai, L. Q.; Chen,W. J. Solid State Electrochem. 2007, 11, 543.
(13) Stephan, A. M.; Nahm, K. S. Polymer 2006, 47, 5952.  
(14) Kim, D.W.; Oh, B.; Park, J. H.; Sun, Y. K. Solid State Ionics 2000, 138, 41.  
(15) Song, M. K.; Kim, Y. T.; Cho, J. Y.; Cho, B.W.; Popov, B. N.; Rhee, H.W. J. Power Sources 2004, 125, 10.  
(16) Rao, M. M.; Liu, J. S.; Li,W. S.; Liao, Y. H.; Liang, Y.; Zhao, L. Z. J. Solid State Electrochem. 2010, 14, 255.  
(17) Liao, Y. H.; Rao, M. M.; Li,W. S.; Tan, C. L.; Yi, J.; Chen, L. Electrochim. Acta 2009, 54, 6396.  
(18) Liao, Y. H.; Rao, M. M.; Li,W. S.; Yang, L. T.; Zhu, B. K.; Xu, R.; Fu, C. H. J. Membr. Sci. 2010, 352, 95.  
(19) Li, Z. H.; Cheng, C.; Zhan, X. Y.;Wu, Y. P.; Zhou, X. D. Electrochim. Acta 2009, 54, 4403.  
(20) Rao, M. M.; Liu, J. S.; Li,W. S.; Liang, Y.; Zhou, D. Y. J. Membr. Sci. 2008, 322, 314.  
(21) Liang, Y. H.;Wang, C. C.; Chen, C. Y. J. Power Sources 2005, 148, 55.  
(22) Wang, Z. L.; Tang, Z. Y. Electrochim. Acta 2004, 49, 1063.  
(23) Yang, M. J.; Li,W. L.;Wang, G. G.; Zhang, J. Q. Solid State Ionics 2005, 176, 2829.
(24) Liu, H. R.; Du, J. H. Solid State Sci. 2006, 8, 526.  
(25) Zhang, H. P.; Zhang, P.; Li, Z. H.; Sun, M.;Wu, Y. P.;Wu, H. Q. Electrochem. Commun. 2007, 9, 1700.  
(26) Yang, C. C. Mater. Lett. 2004, 58, 33.  
(27) Miao, R. Y.; Liu, B.W.; Zhu, Z. Z.; Liu, Y.; Li, J. L.;Wang, X. D.; Li, F. Q. J. Power Sources 2008, 184, 420.  
(28) Nookala, M.; Kumar, B.; Rodrigues, S. J. Power Sources 2002, 111, 165.  
(29) Lee, Y. G.; Park, J. K.; Moon, S. I. Electrochim. Acta 2000, 46, 533.  
(30) Chaix, N.; Alloin, F.; Bélières, J. P.; Saunier, J.; Sanchez, J. Y. Electrochim. Acta 2002, 47, 1327.  
(31) Rao, M. M.; Liu, J. S.; Li,W. S.; Liang, Y.; Liao, Y. H.; Zhao, L. Z. J. Power Sources 2009, 189, 711.  

[1] LI Wan-Long, LI Yue-Jiao, CAO Mei-Ling, QU Wei, QU Wen-Jie, CHEN Shi, CHEN Ren-Jie, WU Feng. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2261-2267.
[2] LI Ya-Dong, DENG Yu-Feng, PAN Zhi-Yi, WEI Yin-Ping, ZHAO Shi-Xi, GAN Lin. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2293-2300.
[3] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2287-2292.
[4] LI Ting, LONG Zhi-Hui, ZHANG Dao-Hong. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 573-580.
[5] ZHANG Xiao-Dong, QIN Li-Yan, CHEN Ming-Qing, LIU Shi-Rong. Fabrication of a Responsive Hydrogel Photonic Crystal Sensing Film for Cadmium Ions[J]. Acta Physico-Chimica Sinica, 2016, 32(12): 2976-2982.
[6] ZHU Shou-Pu, WU Tian, SU Hai-Ming, QU Shan-Shan, XIE Yong-Juan, CHEN Ming, DIAO Guo-Wang. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(11): 2737-2744.
[7] YANG Li-Jiang, GAO Yi-Qin. Molecular Dynamic Simulations of the Effects of Trimethylamine- N-oxide/Urea Mixture on the Hydration of Single-Walled Carbon Nanotube Interiors[J]. Acta Physico-Chimica Sinica, 2016, 32(1): 313-320.
[8] CUI Ying-Na, YIN Jing-Mei, JIA Ying-Ping, LI Shen-Min. Experimental and Density Functional Theoretical Studies on the Spectra of N,N'-di[3-hydroxy-4-(2-benzothiazole)phenyl]urea[J]. Acta Physico-Chimica Sinica, 2015, 31(9): 1647-1654.
[9] WANG Qian-Wen, DU Xian-Feng, CHEN Xi-Zi, XU You-Long. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, 2015, 31(8): 1437-1451.
[10] ZENG Yu-Qun, GUO Yong-Sheng, WU Bing-Bin, HONG Xiang, WU Kai ZHONG, Kai-Fu. Synthesis and Electrochemical Performance of Plastic Crystal Compound-Based Ionic Liquid[J]. Acta Physico-Chimica Sinica, 2015, 31(7): 1351-1358.
[11] QIU Kun-Zan, GUO Wen-Wen, WANG Hai-Xia, ZHU Ling-Jun, WANG Shu-Rong. Influence of Catalyst Structure on Performance of Cu/SiO2 in Hydrogenation of Methyl Acetate[J]. Acta Physico-Chimica Sinica, 2015, 31(6): 1129-1136.
[12] XUE Qing-Rui, LI Jian-Ling, XU Guo-Feng, HOU Peng-Fei, YAN Gang, DAI Yu, WANG Xin-Dong, GAO Fei. Effects of Surface Modification with Ag/C on Electrochemical Properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2[J]. Acta Physico-Chimica Sinica, 2014, 30(9): 1667-1673.
[13] ZHU Zhi, QI Lu, LI Wei, LIAO Xi-Ying. Preparation and Electrochemical Performance of 5 V LiNi0.5Mn1.5O4 Cathode Material by the Composite Co-Precipitation Method for High Energy/High Power Lithium Ion Secondary Batteries[J]. Acta Physico-Chimica Sinica, 2014, 30(4): 669-676.
[14] WU Yue, LIU Xing-Quan, ZHANG Zheng, ZHAO Hong-Yuan. Preparation and Characterization of M(Ⅱ) and M(Ⅳ) Iso-Molar Co-Doped LiMn1.9Mg0.05Ti0.05O4 Cathode Materials for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2014, 30(12): 2283-2290.
[15] SU Ya-Qiong, WU De-Yin, TIAN Zhong-Qun. Density Functional Theory Calculations of the Influence of Weak Hydrogen Bonding Interactions on the Raman Spectra of Thiourea in Aqueous Solution[J]. Acta Physico-Chimica Sinica, 2014, 30(11): 1993-1999.