Please wait a minute...
Acta Phys. -Chim. Sin.  2011, Vol. 27 Issue (07): 1647-1653    DOI: 10.3866/PKU.WHXB20110714
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Hydrogen Adsorption on Zeolite Na-MAZ and Li-MAZ Clusters
LIANG Jian-Ming1, ZHANG Ri-Guang2, ZHAO Qiang1, DONG Jin-Xiang1, WANG Bao-Jun2, LI Jin-Ping1
1. Research Institute of Special Chemicals, Taiyuan University of Technology, Taiyuan 030024, P. R. China;
2. Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, P. R. China
Download:   PDF(823KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Hydrogen adsorption on zeolite Na-MAZ and Li-MAZ clusters was investigated using density functional theory (DFT) with the generalized gradient approximation (GGA) of the Perdew-Burke- Ernzerhof (PBE) exchange-correction functional and the double numerical plus polarization (DNP) basis set. Equilibrium structural parameters, vibration frequencies, and adsorption energies were obtained and compared. The calculated results show that four stable adsorption sites are present on zeolite MAZ. They are designated SI′, SI″, SII′, and SII″, respectively. The most stable adsorption structure was hydrogen on the SII″ site of zeolite Na-MAZ and the hydrogen on the SI″ and SII″ sites of zeolite Li-MAZ were the most stable. We also found that larger adsorption energies indicate longer H―H bond distances and a lower vibration frequency shift. The adsorption ability of zeolite Li-MAZ toward hydrogen is stronger than that of zeolite Na-MAZ. Zeolite Li-MAZ has a higher theoretical hydrogen storage capacity and it may be a potential hydrogen storage material.



Key wordsZeolite MAZ      Hydrogen      Adsorption      Density functional theory      Generalized gradient approximation     
Received: 20 January 2011      Published: 23 May 2011
MSC2000:  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (20871090, 20976115, 20906066).

Corresponding Authors: WANG Bao-Jun, LI Jin-Ping     E-mail: wangbaojun@tyut.edu.cn; jpli211@hotmail.com
Cite this article:

LIANG Jian-Ming, ZHANG Ri-Guang, ZHAO Qiang, DONG Jin-Xiang, WANG Bao-Jun, LI Jin-Ping. Hydrogen Adsorption on Zeolite Na-MAZ and Li-MAZ Clusters. Acta Phys. -Chim. Sin., 2011, 27(07): 1647-1653.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB20110714     OR     http://www.whxb.pku.edu.cn/Y2011/V27/I07/1647

(1) Schlapbach, L.; Züttel, A. Nature 2001, 414, 353.  
(2) Dai,W.; Luo, J. S.; Tang, Y. J.;Wang, C. Y.; Chen, S. J.; Sun,W. G. Acta Phys. Sin. 2009, 58, 1890. [戴伟, 罗江山, 唐永建, 王朝阳, 陈善俊, 孙卫国. 物理学报, 2009, 58, 1890.]
(3) Prasanth, K. P.; Pillai, R. S.; Peter, S. A.; Bajaj, H. C.; Jasra, R. V.; Chung, H. D.; Kim, T. H.; Song, S. D. J. Alloy. Compd. 2008, 466, 439.  
(4) Weitkamp, J.; Fritz, M.; Ernst, S. Int. J. Hydrog. Energy 1995, 20, 967.  
(5) Dong, J. X.;Wang, X. Y.; Xu, H.; Zhao, Q.; Li, J. P. Int. J. Hydrog. Energy 2007, 32, 4998.
(6) Zecchina, A.; Bordiga, S.; Vitillo, J. G.; Ricchiardi, G.; Lamberti, C.; Spoto, G.; Bj?rgen, M.; Lillerud, K. P. J. Am. Chem. Soc. 2005, 127, 6361.  
(7) Langmi, H.W.; Book, D.;Walton, A.; Johnson, S. R.; Al- Mamouri, M. M.; Speight, J. D.; Edwards, P. P.; Harris, I. R.; Anderson, P. A. J. Alloy. Compd. 2005, 404-406, 637.
(8) Jhung, S. H.; Lee, J. S.; Yoon, J.W.; Kim, D. P.; Chang, J. S. Int. J. Hydrog. Energy 2007, 32, 4233.  
(9) Li, Y.; Yang, R. T. J. Phys. Chem. B 2006, 110, 17175.  
(10) Du, X. M.;Wu, E. D. Acta Phys. -Chim. Sin. 2009, 25, 549. [杜晓明, 吴尔冬. 物理化学学报, 2009, 25, 549.]
(11) Du, X. M.;Wu, E. D. Acta Phys. -Chim. Sin. 2009, 25, 1823. [杜晓明, 吴尔冬. 物理化学学报, 2009, 25, 1823.]
(12) Kang, L. H.; Deng,W. Q.; Han, K. L.; Zhang, T.; Liu, Z. M. Int. J. Hydrog. Energy 2008, 33, 105.
(13) Torres, F. J.; Civalleri, B.; Terentyev, A.; Ugliengo, P.; Pisani, C. J. Phys. Chem. C 2007, 111, 1871.  
(14) Palomino, G. T.; Carayol, M. R. L.; Areán, C. O. J. Mater. Chem. 2006, 28, 2884.
(15) Benco, L.; Bucko, T.; Hafner, J.; Toulhoat, H. J. Phys. Chem. B 2005, 109, 22491.  
(16) Areán, C. O.; Palomino, G. T.; Carayol, M. R. L.; Pulido, A.; Rube š, M.; Bludsky, O.; Nachtigall, P. Chem. Phys. Lett. 2009, 477, 139.  
(17) Martucci, A.; Alberti, A.; Guzman-Castillo, M. L.; Di Renzo, F.; Fajula, F. Microporous Mesoporous Mat. 2003, 63, 33.  
(18) Florián, J.; Kubelková, L.; Kotrla, J. J. Mol. Struct. 1995, 349, 435.  
(19) Zhang, R. G.; Ling, L. X.;Wang, B. J.; Huang,W. Appl. Surf. Sci. 2010, 256, 6717.  
(20) Zhang, R. G.;Wang, B. J.; Ling, L. X.; Liu, H. Y.; Huang,W. Appl. Surf. Sci. 2010, 257, 1175.  
(21) Govind, N.; Andzelm, J.; Reindel, K.; Fitzgerald, G. Int. J. Mol. Sci. 2002, 3, 423.  
(22) Szalewicz, K.; Jeziorski, B. From van derWaals to Strongly Bound Complexes. In Molecular Interactions; Scheiner, S. Eds.; JohnWiley & Sons: New York, 1997; p 3.
(23) Novoa, J. J.; Sosa, C. J. Phys. Chem. 1995, 99, 15837.  
(24) van den Berg, A.W. C.; Bromley, S. T.;Wojdel, J. C.; Jansen, J. C. Phys. Rev. B 2005, 72, 155428.  
(25) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671.  

[1] LIU Yanfang, HU Bing, YIN Yazhi, LIU Guoliang, HONG Xinlin. One-Pot Surfactant-free Synthesis of Transition Metal/ZnO Nanocomposites for Catalytic Hydrogenation of CO2 to Methanol[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 223-229.
[2] GU Yuxing, YANG Juan, WANG Dihua. Electrochemical Features of Carbon Prepared by Molten Salt Electro-reduction of CO2[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 208-214.
[3] LIU Zhiming, LIU Guoliang, HONG Xinlin. Influence of Surface Defects and Palladium Deposition on the Activity of CdS Nanocrystals for Photocatalytic Hydrogen Production[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 215-222.
[4] Jordan LEE,Yong LI,Jianing TANG,Xiaoli CUI. Synthesis of Hydrogen Substituted Graphyne through Mechanochemistry and Its Electrocatalytic Properties[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1080-1087.
[5] Yunnan GAO,Shizhen LIU,Zhenqing ZHAO,Hengcong TAO,Zhenyu SUN. Heterogeneous Catalysis of CO2 Hydrogenation to C2+ Products[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 858-872.
[6] Yucui HOU,Congfei YAO,Weize WU. Deep Eutectic Solvents: Green Solvents for Separation Applications[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 873-885.
[7] Wenjun CHEN,Zhimin XUE,Jinfang WANG,Jingyun JIANG,Xinhui ZHAO,Tiancheng MU. Investigation on the Thermal Stability of Deep Eutectic Solvents[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 904-911.
[8] Mingming YUAN,Difan LI,Xiuge ZHAO,Wenbao MA,Kang KONG,Wenxiu NI,Qingwen GU,Zhenshan HOU. Selective Oxidation of Glycerol with Hydrogen Peroxide Using Silica-Encapsulated Heteropolyacid Catalyst[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 886-895.
[9] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[10] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[11] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[12] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[13] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[14] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[15] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.