Please wait a minute...
Acta Phys. -Chim. Sin.  2011, Vol. 27 Issue (07): 1666-1672    DOI: 10.3866/PKU.WHXB20110715
Electrochemical Performance of Cr2O3/TiO2 Composite Material for Lithium Ion Batteries
ZHAO Xing, ZHUANG Quan-Chao, QIU Xiang-Yun, XU Shou-Dong, SHI Yue-Li, CUI Yong-Li
Li-ion Batteries Laboratory, School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, P. R. China
Download:   PDF(855KB) Export: BibTeX | EndNote (RIS)      


The Cr2O3/TiO2 composite material was prepared by a high-temperature solid-state reaction and its structure, morphology, and electrochemical performance were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), charge-discharge test, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). We found that TiO2 doping significantly improved the cyclic performance of Cr2O3 and the reversible capacity of the Cr2O3/TiO2 composite material was 454 mAh·g-1 after 22 charge-discharge cycles, therefore, it has a capacity retention of 73.6% and this is mainly due to TiO2 doping that significantly increases the conductivity of Cr2O3. Our results revealed that the initial large irreversible capacity and the capacity fading could be attributed to an increase in the thickness of the solid electrolyte interface (SEI) film and a reduction in the conductivity of the materials. This was caused by a volume expansion of the Cr2O3/TiO2 electrode during the first discharge process.

Key wordsLithium ion battery      Cr2O3/TiO2 composite material      Conversion reaction      Conductivity      Solid electrolyte interface film     
Received: 24 February 2011      Published: 23 May 2011
MSC2000:  O646  

The project was supported by the Fundamental Research Funds for the Central Universities, China (2010LKHX03, 2010QNB04, 2010QNB05) and Science and Technology “Climbing” Program of China University of Mining and Technology (ON090237).

Corresponding Authors: ZHUANG Quan-Chao     E-mail:
Cite this article:

ZHAO Xing, ZHUANG Quan-Chao, QIU Xiang-Yun, XU Shou-Dong, SHI Yue-Li, CUI Yong-Li. Electrochemical Performance of Cr2O3/TiO2 Composite Material for Lithium Ion Batteries. Acta Phys. -Chim. Sin., 2011, 27(07): 1666-1672.

URL:     OR

(1) Yu, F.; Zhang, J. J.;Wang, C. Y.; Yuan, J.; Yang, Y. F.; Song, G. Z. Progress in Chemistry 2010, 22 (1), 9. [于锋, 张敬杰, 王昌胤, 袁静, 杨岩峰, 宋广智. 化学进展, 2010, 22 (1), 9.]
(2) Zhou, H. H.; Ci, Y. X.; Liu, C. Y. Progress in Chemistry 1998, 10(1), 85. [周恒辉, 慈云祥, 刘昌炎. 化学进展, 1998, 10 (1), 85.]
(3) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496.  
(4) Pereira, N.; Dupont, L.; Tarascon, J. M.; Klein, L. C.; Amatucci, G. G. J. Electrochem. Soc. 2003, 150 (9), A1273.
(5) Pereira, N.; Klein, L. C.; Amatucci, G. G. J. Electrochem. Soc. 2002, 149 (3), A262.
(6) Débart, A.; Dupont, L.; Patrice, R.; Tarascon, J. M. Solid State Sci. 2006, 8, 640.  
(7) Souza, D. C. S.; Pralong, V.; Jacobson, A. J.; Nazar, L. F. Science 2002, 296 (5575), 2012.
(8) Mauvernay, B.; Doublet, M. L.; Monconduit, L. J. Phys. Chem. Solids 2006, 67, 1252.
(9) Silva, D. C. C.; Crosnier, O.; Ouvrard, G.; Greedan, J.; Safa- Sefat, A.; Nazar, L. F. Electrochem. Solid-State Lett. 2003, 6 (8), A162.
(10) Xue, M. Z.; Fu, Z.W. Electrochem. Commun. 2006, 8 (12), 1855.
(11) Badway, F.; Cosandey, F.; Pereira, N.; Amatucci, G. G. J. Electrochem. Soc. 2003, 150 (10), A1318.
(12) Li, H.; Balaya, P.; Maier, J. J. Electrochem. Soc. 2004, 151, A1878.
(13) Hu, J.; Li, H.; Huang, X. J.; Chen, L. Q. Solid State Ionics 2006, 177, 2791.  
(14) Jamnik, J.; Maier, J. Phys. Chem. Chem. Phys. 2003, 5, 5215.
(15) Hu, J.; Li, H.; Huang, X. J. Electrochem. Solid State Lett. 2005, 8 (1), A66.
(16) Chou, S. L.;Wang, J. Z.; Zhong, C.; Rahman, M. M.; Liu, H. K.; Dou, S. X. Electrochimica Acta 2009, 54, 7519.  
(17) Hassan, M. F.; Rahman, M. M.; Guo, Z. P.; Chen, Z. X.; Liu, H. K. Electrochimica Acta 2010, 55, 5006.  
(18) Wagemaker, M.; Kearley, G. J. J. Am. Chem. Soc. 2003, 125, 840.  
(19) He, B. L.; Dong, B.; Li, H. L. Electrochem. Commun. 2007, 9, 425.  
(20) An, L. P.; Gao, X. P.; Li, G. R.; Yan, T. Y.; Zhu, H. Y.; Shen, P. W. Electrochimica Acta 2008, 53, 4573.  
(21) Xu, J.;Wang, Y.; Li, Z. J. Power Sources 2008, 175, 903.  
(22) Balaya, P.; Li, H.; Kienle, L.; Maier, J. Adv. Funct. Mater. 2003, 13, 621.  
(23) Laruelle, S.; Grugeon, S.; Poizot, P.; Dollé, M.; Dupont, L.; Tarascon, J. M. J. Electrochem. Soc. 2002, 149 (5), A627.
(24) Zhukovskii, Y. F.; Kotomin, E. A.; Balaya, P.; Maier, J. Solid State Sci. 2008, 10, 491.
(25) Zhuang, Q. C.;Wei, T.; Du, L. L. J. Phys. Chem. C 2010, 114, 8614.  
(26) Mitra, S.; Poizot, P.; Finke, A.; Tarascon, J. M. Adv. Funct. Mater. 2006, 16 (17), 2281.
(27) Li, H.;Wang, Z. X.; Chen, L. Q.; Huang, X. J. Adv. Mater. 2009, 21 (45), 4593.
(28) Zhuang, Q. C.; Xu, S. D.; Qiu, X. Y. Progress in Chemistry 2010, 22 (6), 1044. [庄全超, 徐守冬, 邱祥云. 化学进展, 2010, 22 (6), 1044.]
(29) Zhuang, Q. C.; Chen, Z. F.; Dong, Q. F.; Jiang, Y. X.; Huang, L.; Sun, S. G. Chinese Science Bulletin 2006, 51 (9), 1055.

[1] Yanhuan CHEN,Jiaofu LI,Huibiao LIU. Preparation of Graphdiyne-Organic Conjugated Molecular Composite Materials for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1074-1079.
[2] Qi-Ge ZHENG,Hui LIU,Quan XIA,Qing-Shan LIU,Lin MOU. Density, Dynamic Viscosity and Electrical Conductivity of Two Hydrophobic Phosphonium Ionic Liquids[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 736-744.
[3] Ting ZHANG,Jie SHEN. Aggregation Properties and Thermodynamics of Micellization of Gemini Surfactants with Diester and Rigid Spacers in Organic Alcohol-Water Mixed Media[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 795-802.
[4] Wan-Long LI,Yue-Jiao LI,Mei-Ling CAO,Wei QU,Wen-Jie QU,Shi CHEN,Ren-Jie CHEN,Feng WU. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2261-2267.
[5] Ya-Dong LI,Yu-Feng DENG,Zhi-Yi PAN,Yin-Ping WEI,Shi-Xi ZHAO,Lin GAN. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2293-2300.
[6] Yi-Fen GAO,Gui-Lin ZHUANG,Jia-Qi BAI,Xing ZHONG,Jian-Guo WANG. Temperature-Dependent Conductivity, Luminescence and Theoretical Calculations of a Novel Zn (Ⅱ)-Based Metal-Organic Framework[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 242-248.
[7] Wen-Hao WU,Xin-Yu HUANG,Rui-Min YAO,Ren-Jie CHEN,Kai LI,Ru-Qiang ZOU. Synthesis and Properties of Polyurethane/Coal-Derived Carbon Foam Phase Change Composites for Thermal Energy Storage[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 255-261.
[8] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2287-2292.
[9] Bao-Lin AN,Fu-Fang YANG,Zhen YANG,Yuan-Yuan DUAN,Yang-Xin YU. Measurements of the Viscosity and Thermal Conductivity of a Gas at Definitive Thermodynamic States[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1129-1133.
[10] Qing-Shan LIU,Hui LIU,Lin MOU. Properties of 1-(Cyanopropyl)-3-methylimidazolium Bis[(trifluoromethyl)sulfonyl]imide[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 617-623.
[11] Ting LI,Zhi-Hui LONG,Dao-Hong ZHANG. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 573-580.
[12] Shou-Pu ZHU,Tian WU,Hai-Ming SU,Shan-Shan QU,Yong-Juan XIE,Ming CHEN,Guo-Wang DIAO. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2737-2744.
[13] Ling ZHENG,Yi PAN,Hong-Xiang JI,Xiao-Xue MA,Nan-Nan XING,Wei GUAN. Evaluation of the Walden Product of Ionic Liquids Using Experiments and a New Theory: An Ion Exchange Transition Model[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2663-2670.
[14] Xiang-Lai. XIA,Lin-Yan. LI,Fang. GUO,Wei. SU,Yan. LIU,Xiao-Mou. CHEN,She-Qi. PAN. Simulation of the Immobilization of Pu in the Gd2Zr2O7 Matrix by Investigating the Thermophysical Properties of (Gd1-xCex)2Zr2O7+x[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1810-1814.
[15] Hong-Zhen. SU,Jing-Mei. YIN,Qing-Shan. LIU,Chang-Ping. LI. Properties of Four Deep Eutectic Solvents: Density, Electrical Conductivity, Dynamic Viscosity and Refractive Index[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1468-1473.