Please wait a minute...
Acta Physico-Chimica Sinica  2011, Vol. 27 Issue (08): 1996-2000    DOI: 10.3866/PKU.WHXB20110805
Preparation of One-Dimensional Titanate Nanomaterials Using Different Titania Sources
LI Xue-Fei, ZHAO Yun, JIAO Qing-Ze, LI Han-Sheng, WU Hong-Yu, LIU Hong-Bo, CUI Wen-Jia
School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, P. R. China
Download:   PDF(630KB) Export: BibTeX | EndNote (RIS)      


One-dimensional titanate nanomaterials were synthesized by a hydrothermal reaction using different titania sources. The morphology and crystal structure of the one-dimensional titanate nanomaterials were greatly affected by the primary particle size and crystal structure of the starting materials. The smaller initial particle size of the reactant led to a faster phase transformation of the products. The pure anatase titania favored the formation of titanate nanotubes, while the mixture of anatase titania and a small amount of rutile titania as a starting material favored the further transformation of nanotubes to nanowires or nanoribbons and promoted the phase transformation.

Key wordsTitanate      One-dimensional nanomaterials      TiO2      Hydrothermal method      Morphology      Crystal structure     
Received: 01 March 2011      Published: 10 June 2011
MSC2000:  O649  

The project was supported by the Basic Research Foundation of Beijing Institute of Technology, China (20070542001).

Corresponding Authors: JIAO Qing-Ze     E-mail:
Cite this article:

LI Xue-Fei, ZHAO Yun, JIAO Qing-Ze, LI Han-Sheng, WU Hong-Yu, LIU Hong-Bo, CUI Wen-Jia. Preparation of One-Dimensional Titanate Nanomaterials Using Different Titania Sources. Acta Physico-Chimica Sinica, 2011, 27(08): 1996-2000.

URL:     OR

(1) Seo, M. H.; Yuasa, M.; Kida, T.; Huh, J. S.; Shimanoe, K.; Yamazoe, N. Sens. Actuator B-Chem. 2009, 137 (2), 513.  
(2) Han, C. H.; Hong, D.W.; Kim, I. J.; Gwak, J.; Han, S. D.; Singh, K. C. Sens. Actuator B-Chem. 2007, 128 (1), 320.  
(3) Hong, D. U.; Han, C. H.; Park, S. H.; Kim, I. J.; Gwak, J.; Han, S. D.; Kim, H. J. Curr. Appl. Phys. 2009, 9 (1), 172.  
(4) Kim, H. S.; Moon,W. T.; Jun, Y. K.; Hong, S. H. Sens. Actuator B-Chem. 2006, 120 (1), 63.  
(5) Qamar, M.; Yoon, C. R.; Oh, H. J.; Lee, N. H.; Park, K.; Kim, D. H.; Lee, K. S.; Lee,W. J.; Kim, S. J. Catal. Today 2008, 131 (1-4), 3.  
(6) Zhao, Y.; Zhao, T. Y.; Liu, Z. Y.; Nakata, K.; Nishimoto, S.; Murakami, T.; Jiang, L.; Fujishima, A. J. Mater. Chem. 2010, 20 (24), 5095.  
(7) Yu, J. G.; Yu, H. G.; Cheng, B.; Trapalis, C. J. Mol. Catal. A-Chem. 2006, 249 (1-2), 135.  
(8) Li, Q. Y.; Lu, G. X. J. Power Sources 2008, 185 (1), 577.  
(9) Uchida, S.; Chiba, R.; Tomiha, M.; Masaki, N.; Shirai, M. Electrochemistry 2002, 70 (6), 418.
(10) Hao, Y. Z.;Wang, L. G. Acta Chim. Sin. 2008, 66 (7), 757. [郝彦忠, 王利刚. 化学学报, 2008, 66 (7), 757.]
(11) Li, X. D.; Zhang, D.W.; Sun, Z.; Chen, Y.W.; Huang, S. M. Microelectron. J. 2009, 40 (1), 108.  
(12) Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu,W. C.; Singh, R. S.; Chen, Z.; Dickey, E. C. J. Mater. Res. 2001, 16 (12), 3331.  
(13) Hoyer, P. Langmuir 1996, 12 (6), 1411.  
(14) Imai, H.; Takei, Y.; Shimizu, K.; Matsuda, M.; Hirashima, H. J. Mater. Chem. 1999, 9 (12), 2971.  
(15) Cui, Y. T.;Wang, J. S.; Li, H. Y.;Wang, Z. Z. Chin. J. Inorg. Chem. 2009, 25 (7), 1274. [崔云涛, 王金淑, 李洪义, 王珍珍. 无机化学学报, 2009, 25 (7), 1274.]
(16) Chen,W.; Sun, X. D.;Weng, D. Mater. Lett. 2006, 60 (29-30), 3477.  
(17) Lee, J.; Ju, H.; Lee, J. K.; Kim, H. S.; Lee, J. Electrochem. Commun. 2010, 12 (2), 210.  
(18) Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Langmuir 1998, 14 (12), 3160.  
(19) Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Adv. Mater. 1999, 11 (15), 1307.  
(20) Chen, Q.; Zhou,W. Z.; Du, G. H.; Peng, L. M. Adv. Mater. 2002, 14 (17), 1208.  
(21) Horvath, E.; Kukovecz, A.; Konya, Z.; Kiricsi, I. Chem. Mat. 2007, 19 (4), 927.  
(22) Poudel, B.;Wang,W. Z.; Dames, C.; Huang, J. Y.; Kunwar, S.; Wang, D. Z.; Banerjee, D.; Chen, G.; Ren, Z. F. Nanotechnology 2005, 16 (9), 1935.  
(23) Huang, J. Q.; Cao, Y. G.; Huang, Q. F.; He, H.; Liu, Y.; Guo,W.; Hong, M. C. Cryst. Growth Des. 2009, 9 (8), 3632.  
(24) Yao, B. D.; Chan, Y. F.; Zhang, X. Y.; Zhang,W. F.; Yang, Z. Y.; Wang, N. Appl. Phys. Lett. 2003, 82 (2), 281.  
(25) Ma, R. Z.; Bando, Y.; Sasaki, T. Chem. Phys. Lett. 2003, 380 (5-6), 577.  
(26) Yuan, Z. Y.; Su, B. L. Colloid Surf. A-Physicochem. Eng. Asp. 2004, 241 (1-3), 173.  
(27) Afshar, S.; Hakamizadeh, M. J. Exp. Nanosci. 2009, 4 (1), 77.  
(28) Poudel, B.;Wang,W. Z.; Dames, C.; Huang, J. Y.; Kunwar, S.; Wang, D. Z.; Banerjee, D.; Chen, G.; Ren, Z. F. Mater. Res. Soc. Symp. Proc. 2005, 836, 23.
(29) Morgan, D. L.;Waclawik, E. R.; Frost, R. L. Synthesis and characterisation of titania nanotubes: Effect of phase and crystallite size on nanotube formation. In Advanced Materials and Processing IV, 4th International Conference on Advanced Materials and Processing, Hamilton, New Zealand, Dec 10-13, 2006; Zhang, D., Pickering, K., Gabbitas, B., Cao, P., Langdon, A., Torrens, R., Verbeek, J., Eds.; Trans Tech Publications LTD: Switzerland, 2007; 211-214.
(30) Wang, Y. Q.; Hu, G. Q.; Duan, X. F.; Sun, H. L.; Xue, Q. K. Chem. Phys. Lett. 2002, 365 (5-6), 427.  
(31) Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.;Walsh, F. C. J. Mater. Chem. 2004, 14 (22), 3370.  
(32) Chen,W. P.; Guo, X. Y.; Zhang, S. L.; Jin, Z. S. J. Nanopart. Res. 2007, 9 (6), 1173.  
(33) Lan, Y.; Gao, X. P.; Zhu, H. Y.; Zheng, Z. F.; Yan, T. Y.;Wu, F.; Ringer, S. P.; Song, D. Y. Adv. Funct. Mater. 2005, 15 (8), 1310.  
(34) Penga, H. R.; Lia, G. C.; Zhang, Z. K. Mater. Lett. 2005, 59 (10), 1142.  

[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Physico-Chimica Sinica, 2018, 34(2): 168-176.
[2] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1411-1420.
[3] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1492-1498.
[4] CHEN Fang, LIU Yuan-Yuan, WANG Jian-Long, Su Ning-Ning, LI Li-Jie, CHEN Hong-Chun. nvestigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1140-1148.
[5] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 960-967.
[6] GAO Xiao-Ping, GUO Zhang-Long, ZHOU Ya-Nan, JING Fang-Li, CHU Wei. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 602-610.
[7] ZHAO Shun-Sheng, LI Lan-Lan, LIU Xiang-Rong, DING Zuo-Cheng, YANG Zai-Wen. Crystal Structure, Thermal Decomposition and Interaction with CT-DNA of Three 2-Hydroxy-1-naphthaldehyde Acyl Hydrazones[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 356-363.
[8] WAN Xiu-Mei, WANG Li, GONG Xiao-Qing, LU Dan-Feng, QI Zhi-Mei. Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2523-2531.
[9] CAO Shi, ZENG Li-Li, XIE Jing, WAN Shi-Gang, Li Dan, ZHANG Hui. Supramolecular Helical Chirality of Schiff Base Copper(Ⅱ) Complexes and Their Chiroptical Spectroscopy[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2480-2490.
[10] YANG Li, ZHANG Guo-Ying, LIU Ying, ZHANG Tong-Lai. Theoretical and Experimental Studies on the Crystal Morphology of Transition-Metal Carbohydrazide Perchlorate Complexes[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2463-2471.
[11] LAN Hai, XIAO Xi, YUAN Shan-Liang, ZHANG Biao, ZHOU Gui-Lin, JIANG Yi. MoFeOx-Supported Catalysts for the Catalytic Conversion of Glycerol to Allyl Alcohol without External Hydrogen Donors[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2301-2309.
[12] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2029-2034.
[13] HUANG Ya-Yu, FANG Qiu-Yan, ZHOU Jian-Zhang, ZHAN Dong-Ping, SHI Kang, TIAN Zhong-Qun. Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2042-2051.
[14] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 1944-1959.
[15] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2185-2196.