Please wait a minute...
Acta Physico-Chimica Sinica  2011, Vol. 27 Issue (08): 1863-1867    DOI: 10.3866/PKU.WHXB20110807
Synthesis and Properties of LiFePO4/C Cathode Material with a New Carbon Source
CHU Dao-Bao, LI Yan, SONG Qi, ZHOU Ying
Anhui Key Laboratory of Functional Molecular Solids and Molecular-based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui Province, P. R. China
Download:   PDF(672KB) Export: BibTeX | EndNote (RIS)      


We synthesized LiFePO4/C composite cathode materials by the rheological phase method with vegetable protein soya bean milk as a carbon source while FePO4·4H2O and LiOH·H2O as raw materials. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the LiFePO4/C composite materials had good crystallinity, ultrafine sphere-like particles of 200 nm in size and in situ carbon. The electrochemical performance of LiFePO4/C by galvanostatic cycling studies showed excellent cycle stability. The LiFePO4/C cathode material gave a high initial discharge capacity of 156 mAh·g-1 at 0.1C and the first columbic efficiency was 98.7%. This capacity was still 149 mAh·g-1 after 40 cycles at 0.1C and its capacity retention was more than 95% while the discharge capacity reached 134.7 mAh·g-1 at 1C indicating high electrochemical capacity and excellent cycling stability.

Key wordsLithium-ion battery      LiFePO4      Cathode material      Vegetable protein      Carbon coating      Bean milk      Rheological phase method     
Received: 08 April 2011      Published: 10 June 2011
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (20476001) and Natural Science Foundation of Anhui Province, China (070414160).

Corresponding Authors: CHU Dao-Bao     E-mail:
Cite this article:

CHU Dao-Bao, LI Yan, SONG Qi, ZHOU Ying. Synthesis and Properties of LiFePO4/C Cathode Material with a New Carbon Source. Acta Physico-Chimica Sinica, 2011, 27(08): 1863-1867.

URL:     OR

(1) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144 (4), 1188.  
(2) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.  
(3) Whittingham, M. S. Chem. Rev. 2004, 104, 4271.  
(4) Lu, Z. G.; Cheng, H.; Lo, M. F.; Chung, C. Y. Adv. Funct. Mater. 2007, 17, 3885.  
(5) Wang, Y. G.;Wang Y. R.; Hosono, E.;Wang, K. X.; Zhou, H. S. Angew. Chem. Int. Edit. 2008, 47, 7461.  
(6) Ravet, N.; Chouinard, Y.; Magnan, J. F.; Besner, S.; Gauthier, M.; Armand, M. J. Power Sources 2001, 97, 503.  
(7) Chen, Z. H.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A1184.
(8) Doeff, M. M.; Hu, Y. Q.; Mclarnon, F. Electrochem. Solid-State Lett. 2003, 6, A207.
(9) Yu, H. M.; Zheng,W.; Cao, G. X.; Zhao, X. B. Acta Phys. -Chim. Sin. 2009, 25, 2186. [余红明, 郑威, 曹高劭, 赵新兵. 物理化学学报, 2009, 25, 2186.]
(10) Prosini, P. P.; Zane, D.; Pasquali, M. Electrochim. Acta 2001, 46, 3517.  
(11) Yamada, A.; Chung, S. C.; Hinokuma, K. J. J. Electrochem. Soc. 2001, 148, A224.
(12) Piana, M.; Cushing, B. L.; Goodenough, J. B.; Penazzi, N. Solid State Ionics 2004, 175, 233.  
(13) Meligrana, G.; Gerbaldi, C.; Tuel, A.; Bodoardo, S.; Penazzi, N. J. Power Sources. 2001, 160, 516.
(14) Choi, D.; Kumta, P. N. J. Power Sources 2007, 163, 1064.  
(15) Lee, S. B.; Cho, S. H.; Cho, S. J.; Park, G. J.; Park, S. H.; Lee, Y. S. Electrochem. Commun. 2008, 10, 1219.  
(16) Liu, X. H.; Zhao, Z.W. Powder Technology 2010, 197, 309.  
(17) Zou, H. L.; Zhang, G. H.; Shen, P. K. Materials Research Bulletin 2010, 45, 149.  
(18) Wang, K.; Cai, R.; Yuan, T.; Yu, X.; Ran, R.; Shao, Z. P. Electrochim. Acta 2009, 54, 2861.  
(19) Gaberscek, M.; Dominko, R.; Bele, M.; Remskar, M.; Hanzel, D.; Jamnik, J. Solid State Ionics 2005, 176, 1801.  
(20) Sides, C. R.; Croce, F.; Young, V. K. Electrochem. Solid-State Lett. 2005, 8, A484.
(21) Kuwahara, A.; Suzuki, S.; Miyayama, M. Ceramics International 2008, 34, 863.  
(22) Zhang, D.; Cai, R.; Zhou, Y. K.; Shao, Z. P.; Liao, X. Z.; Ma, Z. F. Electrochim. Acta 2010, 55, 2653.  
(23) Yang, S. F.; Song, Y.; Zavalij, P. Y.; Whittingham, M. S. Electrochem. Commun. 2002, 4, 239.
(24) Yang, G. L.; Zhang, X. F.; Liu, J.; He, X. G.;Wang, J.W.; Xie, H. M.;Wang, R. S. J. Power Sources 2010, 195, 1211.  
(25) Huang, Y. H.; Park, K. S.; Goodenough, J. B. J. Electrochem. Soc. 2006, 153, A2282.
(26) Ni, J. F.; Morishita, M.; Kawabe, Y.;Watada, M.; Takeichi, N.; Sakai, T. J. Power Sources 2010, 195, 2877.  
(27) Luo, S. H.; Tang, Z. L.; Lu, J. B.; Zhang, Z. T. Chinese Chemical Letters 2007, 18, 237.  
(28) Huang, Y. H.; Ren, H. B.; Yin, S. Y.;Wang, Y. H.; Peng, Z. H.; Zhou, Y. H. J. Power Sources 2010, 195, 610.  
(29) Li, D. M.; Song, H. L.; Zu, D. H. Cereal & Food Industry 2006, 13, 20. [李大明, 宋焕禄, 祖道海. 粮食与食品工业, 2006, 13, 20.]
(30) Xiong, L. Z.; He, Z. Q. Acta Phys. -Chim. Sin. 2010, 26, 573. [熊利芝, 何则强. 物理化学学报, 2010, 26, 573.]
(31) Sun, J.; Xie,W.; Yuan, L.; Zhang, K.;Wang, Q. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 1999, 64, 157.
(32) He, B. L.; Zhou,W. J.; Bao, S. J.; Liang, Y. Y.; Li, H. L. Electrochim. Acta 2007, 52, 3286.  

[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1605-1613.
[2] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1621-1627.
[3] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1533-1547.
[4] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1421-1428.
[5] ZHANG Ying-Jie, ZHU Zi-Yi, DONG Peng, QIU Zhen-Ping, LIANG Hui-Xin, LI Xue. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1085-1107.
[6] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1189-1196.
[7] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1197-1204.
[8] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 377-385.
[9] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2517-2522.
[10] LI Wan-Long, LI Yue-Jiao, CAO Mei-Ling, QU Wei, QU Wen-Jie, CHEN Shi, CHEN Ren-Jie, WU Feng. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2261-2267.
[11] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 18-27.
[12] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 211-241.
[13] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2287-2292.
[14] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2293-2300.
[15] WUAi-Ming, XIA Guo-Feng, SHEN Shui-Yun, YIN Jie-Wei, MAO Ya, BAI Qing-You, XIE Jing-Ying, ZHANG Jun-Liang. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1866-1879.