Please wait a minute...
Acta Phys. -Chim. Sin.  2011, Vol. 27 Issue (08): 1881-1885    DOI: 10.3866/PKU.WHXB20110827
ELECTROCHEMISTRY AND NEW ENERGY     
Preparation of Mesoporous Carbon at Different Temperatures as a Catalyst Support for Direct Methanol Fuel Cells
XU Qun-Jie, LI Jin-Guang, LI Qiao-Xia
Department of Thermal Power and Environmental Engineering, Shanghai University of Electric Power, Shanghai 200090, P. R.China
Download:   PDF(593KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Using mesoporous SiO2 (SBA-15) as templates and sugar as a carbon precursor, mesoporous carbon (CMK-3) was prepared at different temperatures (600-900 °C). 20%(w) Pt/CMK-3 was then prepared by impregnation reduction with sodium borohydride as a reductant. Cyclic voltammetry (CV) and chronoamperometry were applied to study the catalytic performance and stability toward methanol oxidation for the as-prepared catalyst. CO striping voltammetry was used to determine its anti-poisoning capability toward CO. The results show that the Pt/CMK-3 prepared at 900 °C had the best catalytic performance and stability toward methanol but at a carbonization temperature of 700 °C the Pt catalyst had a lower stripping potential to CO.



Key wordsMesoporous carbon      Methanol      Pt      CO striping     
Received: 17 March 2011      Published: 23 June 2011
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (20873031), Innovation Program of Shanghai Municipal Education Commission, China (10ZZ116), Key Project of Shanghai Committee of Science and Technology, China (09230501400, 10160502300) and Talent Development Fund of Shanghai, China.

Corresponding Authors: XU Qun-Jie     E-mail: xuqunjie@shiep.edu.cn
Cite this article:

XU Qun-Jie, LI Jin-Guang, LI Qiao-Xia. Preparation of Mesoporous Carbon at Different Temperatures as a Catalyst Support for Direct Methanol Fuel Cells. Acta Phys. -Chim. Sin., 2011, 27(08): 1881-1885.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB20110827     OR     http://www.whxb.pku.edu.cn/Y2011/V27/I08/1881

(1) Wang, R. H.; Tian, C. G.;Wang, L.;Wang, B. L.; Zhang, H. B.; Fu, H. G. Chem. Commun. 2009, 3104.
(2) Sun, Z. P.; Zhang, X. G.; Liang, Y. Y.; Tong, H.; Xue, R. L.; Yang, S. D.; Li, H. L. J. Electroanal. Chem. 2009, 633, 1.  
(3) Reshetenko, T. V.; Kim, H. T.; Kweon, H. J. Electrochim. Acta 2008, 53, 3043.  
(4) Zhou, C.;Wang, H.; Peng, F.; Liang, J.; Yu, H.; Yang, J. Langmuir 2009, 25, 7711.  
(5) Liu, H. J.;Wang, X. M.; Cui,W. J.; Dou, Y. Q.; Zhao, D. Y.; Xia, Y. Y. J Mater. Chem. 2010, 20, 4223.  
(6) Xu, Q. J.; Zhou, X. J.; Li, Q. X.; Li, J. G. Acta Phys. -Chim. Sin. 2010, 26, 2135. [徐群杰, 周小金, 李巧霞, 李金光. 物理化学学报, 2010, 26, 2135.]
(7) Salgado, J. R. C.; Alcaide, F.; álvarez, G.; Calvillo, L.; Lázaro, M. J.; Pastor, E. J. Power Sources 2010, 195, 4022.  
(8) Salgado, J. R. C.; Quintana, J. J.; Calvillo, L.; Lazaro, M. J.; Cabot, P. L.; Esparbe, I.; Pastor, E. Phys. Chem. Chem. Phys. 2008, 10, 6796.
(9) Chen, M. H.; Jiang, Y. X.; Chen, S. R.; Huang, R.; Lin, J. L.; Chen, S. P.; Sun, S. G. J. Phys. Chem. C 2010, 114, 19055.  
(10) Ryoo, R.; Joo, S. H.; Jun, S. J. Phys. Chem. B 1999, 103, 7743.  
(11) Shanahan, P. V.; Xu, L. B.; Liang, C. D.;Waje, M.; Dai, S.; Yan, Y. S. J. Power Sources 2008, 185, 423.  
(12) Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.  
(13) Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 10712.  
(14) Parsons, R.; VanderNoot, T. J. Electroanal. Chem. 1988, 257, 9.  
(15) Sirk, A. H. C.; Hill, J. M.; Kung, S. K. Y.; Birss, V. I. J. Phys. Chem. B 2004, 108, 689.  
(16) Liu, Z. L.; Ling, X. Y.; Su, X. D.; Lee, J. Y. J. Phys. Chem. B 2004, 108, 8234.  
(17) Howard Fairbrother, D.; Peng, X. D.; Viswanathan, R.; Stair, P. C.; Trenary, M.; Fan, J. Surface Science Letters 1993, 285, L455.
(18) Cui, X. Z.; Cui, F. M.; He, Q. J.; Guo, L. M.; Ruan, M. l.; Shi, J. l. Fuel 2010, 89, 372.  
(19) Lee, E. P.; Peng, Z.; Cate, D. M.; Yang, H.; Campbell, C. T.; Xia, Y. J. Am. Chem. Soc. 2007, 129, 10634.  
(20) Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi, L. J. Power Sources 2002, 105, 13.  

[1] Yucui HOU,Congfei YAO,Weize WU. Deep Eutectic Solvents: Green Solvents for Separation Applications[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 873-885.
[2] Xi HE,Xiaoyu LÜ,Xi FAN,Wenjun LIN,Haoran LI,Congmin WANG. Ultra-High SO2 Capture by Anion-Functionalized Resins through Multiple-Site Adsorption[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 896-903.
[3] An XIE,Zhi WANG,Qiaoyu WU,Liping CHENG,Genggeng LUO,Di SUN. [Ag25(SC6H4Pri)18(dppp)6](CF3SO3)7·CH3CN (HSC6H4Pri = 4-t-isopropylthiophenol, and dppp = 1, 3-bis(diphenyphosphino)propane) Cluster Containing a Sandwich-like Skeleton: Structural Characterization and Optical Properties[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 776-780.
[4] László VON SZENTPÁLY. Multiply Charged Anions, Maximum Charge Acceptance, and Higher Electron Affinities of Molecules, Superatoms, and Clusters[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 675-682.
[5] Marco FRANCO-PÉREZ,José L. GÁZQUEZ,W. AYERS Paul,Alberto VELA. Thermodynamic Dual Descriptor[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 683-391.
[6] Paul GEERLINGS,Frank DE PROFT,Stijn FIAS. Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 699-707.
[7] Ulises OROZCO-VALENCIA,L. GÁZQUEZ José,Alberto VELA. Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 692-698.
[8] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[9] Chaoxian YAN,Fan YANG,Ruizhi WU,Dagang ZHOU,Xing YANG,Panpan ZHOU. Application of Natural Orbital Fukui Functions and Bonding Reactivity Descriptor in Understanding Bond Formation Mechanisms Underlying [2+4] and [4+2] Cycloadditions of o-Thioquinones with 1, 3-Dienes[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 497-502.
[10] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[11] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[12] Huarong BAI,Huanhuan FAN,Xiaobing ZHANG,Zhuo CHEN,Weihong TAN. Aptamer-Conjugated Nanomaterials for Specific Cancer Diagnosis and Targeted Therapy[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 348-360.
[13] Shichao ZHOU,Guitao FENG,Dongdong XIA,Cheng LI,Yonggang WU,Weiwei LI. Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 344-347.
[14] Yanhui YI,Xunxun WANG,Li WANG,Jinhui YAN,Jialiang ZHANG,Hongchen GUO. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 247-255.
[15] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.