Please wait a minute...
Acta Phys. Chim. Si.n  2011, Vol. 27 Issue (09): 2123-2128    DOI: 10.3866/PKU.WHXB20110902
ELECTROCHEMISTRY AND NEW ENERGY     
Sol-Gel Synthesis and Electrochemical Performance of Porous LiMnPO4/MWCNT Composites
NIE Ping, SHEN Lai-Fa, CHEN Lin, SU Xiao-Fei, ZHANG Xiao-Gang, LI Hong-Sen
1. College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P. R. China;
2. College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
Download:   PDF(863KB) Export: BibTeX | EndNote (RIS)      

Abstract  Porous LiMnPO4 and LiMnPO4/MWCNT (multi-walled carbon nanotube) composites were prepared using a citric acid assisted sol-gel method. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), nitrogen adsorption-desorption isotherms (BET), and transmission electron microscopy (TEM) were performed to characterize their morphologies and structures. The results indicated that fine-sized, well-crystallized olivine LiMnPO4 was synthesized. The interlaced carbon nanotube networks were intimately embedded and incorporated into the porous LiMnPO4 particle to form highlyconductive three-dimensional (3D) networks. The LiMnPO4 particle and LiMnPO4/MWCNT composite had rich hierarchical pores. A detailed analysis showed that the average pore size was in the mesoporous range and specific surface areas of 73.7 and 69.9 m2·g-1 were obtained, respectively. Compared with the LiMnPO4 particle the LiMnPO4/MWCNT composite exhibited much higher specific capacity. When discharged at a rate of 0.05C and 2C the capacities were 108.8 and 33.2 mAh·g-1, respectively. The MWCNT effectively improved the electronic conductivity of the hybrid materials as shown by electrochemical impedance spectroscopy (EIS). The improved electrochemical performance of the LiMnPO4/MWCNT electrode is attributed to the enhanced electrical conductivity caused by the tighter binding of the carbon nanotubes with the LiMnPO4 primary particles as well as by the interconnected open pores with a high surface area.

Key wordsLithium manganese phosphate      Carbon nanotube      Porous material      Sol-gel method      Lithium ion battery     
Received: 23 May 2011      Published: 01 July 2011
MSC2000:  O646  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2007CB209703), National Natural Science Foundation of China (20873064), Jiangsu Innovation Program for Graduate Education, China (CXZZ11_0204) and Outstanding Doctoral Dissertation in NUAA, China (BCXJ11-10).

Corresponding Authors: ZHANG Xiao-Gang     E-mail: azhangxg@163.com
Cite this article:

NIE Ping, SHEN Lai-Fa, CHEN Lin, SU Xiao-Fei, ZHANG Xiao-Gang, LI Hong-Sen. Sol-Gel Synthesis and Electrochemical Performance of Porous LiMnPO4/MWCNT Composites. Acta Phys. Chim. Si.n, 2011, 27(09): 2123-2128.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20110902     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I09/2123

(1) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.  
(2) Choi, D.;Wang, D. H.; Bae, I. T.; Xiao, J.; Nie, Z. M.;Wang, W.; Viswanathan, V. V.; Lee, Y. J.; Zhang, J. G.; Graff, G. L.; Yang, Z. G.; Liu, J. Nano Lett. 2010, 10, 2799.  
(3) Oh, S. M.; Oh, S.W.; Yoon, C. S.; Scrosati, B.; Amine, K.; Sun, Y. K. Adv. Funct. Mater. 2010, 20, 3260.  
(4) Delacourt, C.; Laffont, L.; Bouchet, R.;Wurm, C.; Leriche, J. B.; Morcrette, M.; Tarascon, J. M.; Masqueliera, C. J. Electrochem. Soc. 2005, 152, A913.
(5) Chang, X. Y.;Wang, Z. X.; Li, X. H.; Kuang, Q.; Peng,W. J.; Guo, H. J.; Zhang, Y. H. Acta Phys. -Chim. Sin. 2004, 20, 1249. [常晓燕, 王志兴, 李新海, 匡琼, 彭文杰, 郭华军, 张云河. 物理化学学报, 2004, 20, 1249.]
(6) Oh, S. M.; Jung, H. G.; Yoon, C. S.; Myung, S. T.; Chen, Z. H.; Amine, K.; Sun, Y. K. J. Power Sources 2011, 196, 6924.  
(7) Hong, J.;Wang, F.;Wang, X. L.; Graetz, J. J. Power Sources 2011, 196, 3659.  
(8) Delacourt, C.; Poizot, P.; Morcrette, M.; Tarascon, J. M.; Masquelier, C. Chem. Mater. 2004, 16, 93.  
(9) Xiao, J.; Xu,W.; Choi, D.; Zhang, J. G. J. Electrochem. Soc. 2010, 157, A142.
(10) Oh, S. M.; Oh, S.W.; Myung, S. T.; Lee, S. M.; Sun, K. Y. J. Alloy. Compd. 2010, 506, 372.  
(11) Hu, C. L.; Yi, H. H.; Fang, H. S; Yang, B.; Yao, Y. C.; Ma,W. H.; Dai, Y. N. Electrochem. Commun. 2010, 12, 1784.  
(12) Yi, H. H.; Hu, C. L.; Fang, H. S.; Yang, B.; Yao, Y. C.; Ma,W. H.; Dai, Y. H. Electrochim. Acta 2011, 56, 4052.  
(13) Fang, H. S.; Li, L. P.; Yang, Y.; Yan, G. F.; Li, G. S. Chem. Commun. 2008, No. 9, 1118.
(14) Fang, H. S.; Pan, Z. Y.; Li, L. P.; Yang, Y.; Yan, G. F.; Li, G. S.; Wei, S. Q. Electrochem. Commun. 2008, 10, 1071.  
(15) Kwon, N. H.; Drezen, T.; Exnar, I.; Teerlinck, I.; Isono, M.; Grätzel, M. Electrochem. Solid-State Lett. 2006, 9, A277.
(16) Wang, D. Y.; Buqa, H.; Crouzet, M.; Deghenghi, G.; Drezen, T.; Exnar, I.; Kwon, N. H.; Miners, J. H.; Poletto, L.; Gr?tzel, M. J. Power Sources 2009, 189, 624.  
(17) Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Xu, K.; Zhang, F. J. Mater. Chem. 2011, 21, 761.  
(18) Kim, J. K.; Choi, J.W.; Chauhan, G. S.; Ahn, J. H.; Hwang, G. C.; Choi, J. B.; Ahn, H. J. Electrochim. Acta 2008, 53, 8258.  
(19) Dominko, R.; Bele, M.; Gaberscek, M.; Remskar, M.; Hanzel, D.; Goupil, J. M.; Pejovnik, S.; Jamnik, J. J. Power Sources 2006, 153, 274.  
(20) Zhou, Y. K.;Wang, J.; Hu, Y. Y.; O'Hayre, R.; Shao, Z. P. Chem. Commun. 2010, 46, 7151.  
(21) Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Xu, K.; Xia, Y. Y. J. Mater. Chem. 2010, 20, 6998.  
(22) Qian, J. F.; Zhou, M.; Cao, Y. L.; Ai, X. P.; Yang, H. X. J. Phys. Chem. C 2011, 114, 3477.
(23) Su, C.; Lu, G. Q.; Xu, L. H.; Zhang, C.; Ma, C. A. Acta Phys. -Chim. Sin. 2011, 27, 609. [苏畅, 陆国强, 徐立环, 张诚, 马淳安. 物理化学学报, 2011, 27, 609.]
(24) Zhang, X. B.; Chen, M. H.; Zhang, X. G.; Li, Q.W. Acta Phys. -Chim. Sin. 2010, 26, 3169. [张校菠, 陈名海, 张校刚, 李清文. 物理化学学报, 2010, 26, 3169.]
(25) Saravanan, K.; Vittal, J. J.; Reddy, M. V.; Chowdari, B. V. R.; Balaya, P. J. Solid State Electrochem. 2010, 14, 1755.  
(26) Ji, H. M.; Yang, G.; Ni, H.; Roy, S.; Pinto, J.; Jiang, X. F. Electrochim. Acta 2011, 56, 3093.  
(27) Rangappa, D.; Sone, K.; Ichihara, M.; Kudo, T.; Honma, I. Chem. Commun. 2010, 46, 7548.  
(28) Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Yang, S. D.; Lu, X. J. Nanoscale 2011, 3, 572.  
[1] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. Chim. Si.n, 2018, 34(1): 99-107.
[2] YU Jing-Hua, LI Wen-Wen, ZHU Hong. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. Chim. Si.n, 2017, 33(9): 1838-1845.
[3] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Si.n, 2017, 33(6): 1197-1204.
[4] WANG Lan-Yi, YU Xue-Hua, ZHAO Zhen. Synthesis of Inorganic Porous Materials and Their Applications in the Field of Environmental Catalysis[J]. Acta Phys. Chim. Si.n, 2017, 33(12): 2359-2376.
[5] LI Wan-Long, LI Yue-Jiao, CAO Mei-Ling, QU Wei, QU Wen-Jie, CHEN Shi, CHEN Ren-Jie, WU Feng. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Phys. Chim. Si.n, 2017, 33(11): 2261-2267.
[6] LI Ya-Dong, DENG Yu-Feng, PAN Zhi-Yi, WEI Yin-Ping, ZHAO Shi-Xi, GAN Lin. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Phys. Chim. Si.n, 2017, 33(11): 2293-2300.
[7] LI Lu-Lu, LIU Shuai, ZHANG Qin, HU Nan-Tao, WEI Liang-Ming, YANG Zhi, WEI Hao. Advances in Covalent Organic Frameworks[J]. Acta Phys. Chim. Si.n, 2017, 33(10): 1960-1977.
[8] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. Chim. Si.n, 2016, 32(9): 2287-2292.
[9] WANG Yue, JIANG Quan, SHANG Jie-Kun, XU Jie, LI Yong-Xin. Advances in the Synthesis of Mesoporous Carbon Nitride Materials[J]. Acta Phys. Chim. Si.n, 2016, 32(8): 1913-1928.
[10] XIA Ji-Ye, DONG Guo-Dong, TIAN Bo-Yuan, YAN Qiu-Ping, HAN Jie, QIU Song, LI Qing-Wen, LIANG Xue-Lei, PENG Lian-Mao. Contact Resistance Effects in Carbon Nanotube Thin Film Transistors[J]. Acta Phys. Chim. Si.n, 2016, 32(4): 1029-1035.
[11] LI Qing, YANG Deng-Feng, WANG Jian-Hua, WU Qi, LIU Qing-Zhi. Biomimetic Modification and Desalination Behavior of (15,15) Carbon Nanotubes with a Diameter Larger than 2 nm[J]. Acta Phys. Chim. Si.n, 2016, 32(3): 691-700.
[12] WANG Rui-Fen, WANG Fu-Ming, SONG Jin-Ling, AN Sheng-Li, WANG Xin. Synthesis and Photocatalytic Activities of Rare Earth-Boron Co-Doped Slice Layer TiO2[J]. Acta Phys. Chim. Si.n, 2016, 32(2): 536-542.
[13] LI Ting, LONG Zhi-Hui, ZHANG Dao-Hong. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Phys. Chim. Si.n, 2016, 32(2): 573-580.
[14] LIU Dan, HU Yan-Yan, ZENG Chao, QU De-Yu. Soft-Templated Ordered Mesoporous Carbon Materials: Synthesis, Structural Modification and Functionalization[J]. Acta Phys. Chim. Si.n, 2016, 32(12): 2826-2840.
[15] ZHU Shou-Pu, WU Tian, SU Hai-Ming, QU Shan-Shan, XIE Yong-Juan, CHEN Ming, DIAO Guo-Wang. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Phys. Chim. Si.n, 2016, 32(11): 2737-2744.