Please wait a minute...
Acta Phys. Chim. Si.n  2011, Vol. 27 Issue (09): 2118-2122    DOI: 10.3866/PKU.WHXB20110841
ELECTROCHEMISTRY AND NEW ENERGY     
Hydrothermal Synthesis of Spherical Li4Ti5O12 as Anode Material for High Power Lithium-Ion Secondary Battery
YAN Hui, ZHANG Huan, ZHANG Ding, ZHU Zhi, QI Lu
Beijing National Laboratory for Molecular Sciences, New Energy Materials and Technology Laboratory, Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
Download:   PDF(573KB) Export: BibTeX | EndNote (RIS)      

Abstract  Pure spinel-type lithium titanate, Li4Ti5O12, was successfully fabricated by a facile hydrothermal route using anatase TiO2 and LiOH solution as raw materials. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and laser particle size distribution (PSD) analysis. The results showed that a spherical well-crystallized Li4Ti5O12 oxide was obtained at a calcination temperature of 800 °C. The optimal Li4Ti5O12 also has excellent electrochemical performance, which reached 162 mAh·g-1 at a current density of 35 mA· g-1 and a good rate capability with a capacity reached 124 mAh·g-1 even at a current density of 720 mA·g-1.

Key wordsHydrothermal synthesis      Spherical      Li4Ti5O12      Electrochemical performance      Lithium-ion secondary battery     
Received: 28 March 2011      Published: 04 July 2011
MSC2000:  O646  
Fund:  

The project was supported by the National High Technology Research and Development Program of China (863) (2008AA11A102).

Corresponding Authors: QI Lu     E-mail: qilu@pku.edu.cn
Cite this article:

YAN Hui, ZHANG Huan, ZHANG Ding, ZHU Zhi, QI Lu. Hydrothermal Synthesis of Spherical Li4Ti5O12 as Anode Material for High Power Lithium-Ion Secondary Battery. Acta Phys. Chim. Si.n, 2011, 27(09): 2118-2122.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20110841     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I09/2118

(1) Ohzuku, T.; Ueda, A.; Yamamoto, N. J. Electrochem. Soc. 1995, 142, 1431.  
(2) Abraham, K. M.; Pasquariello, D. M.;Willstaedt, E. B. J. Electrochem. Soc. 1990, 137, 743.  
(3) Courtney, I. A.; Dahn, J. R. J. Electrochem. Soc. 1997, 144, 2045.  
(4) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. J. Power Sources 2001, 97-98, 235.
(5) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496.  
(6) Wang, G. J.; Gao, J.; Fu, L. J.; Zhao, N. H.;Wu, Y. P.; Takamura, T. J. Power Sources 2007, 174, 1109.  
(7) Yao, J.W.;Wu, F. J. Funct. Mater. 2007, 38 (8), 1294. [姚经文, 吴锋. 功能材料, 2007, 38 (8), 1294.]
(8) Pasquier, A. D.; Huang, C. C.; Spitler, T. J. Power Sources 2009, 186, 508.  
(9) Venkateswarlu, M.; Chen, C. H.; Do, J. S.; Lin, C.W.; Chou, T. C.; Hwang, B. J. J. Power Sources 2005, 146, 204.  
(10) Wang, D.; Ding, N.; Song, X. H.; Chen, C. H. J. Mater. Sci. 2009, 44, 198.  
(11) Yang, J.W.; Zhong, H.; Zhong, H. Y.; Li, J.; Dai, Y. Y. J. Cent. South Univ. 2005, 36 (1), 55. [杨建文, 钟晖, 钟海云, 李荐, 戴艳阳. 中南大学学报, 2005, 36 (1), 55.]
(12) Zaghib, K.; Simoneau, M.; Armand, M.; Gauthier, M. J. Power Sources 1999, 81-82, 300.
(13) Guerfia, A.; Sevignya, S.; Lagacea, M.; Hovington, P.; Kinoshita, K.; Zaghib, K. J. Power Sources 2003, 119-121, 88.
(14) Bach, S.; Pereira-Ramos, J. P.; Baffier, N. J. Power Sources 1999, 81-82, 273.
(15) Jiang, C. H.; Ichihara, M.; Honma, I.; Zhou, H. S. Electrochim. Acta 2007, 52, 6470.  
(16) Li, J. R.; Tang, Z. L.; Zhang, Z. T. Electrochem. Commun. 2005, 7, 894.  
(17) Li, Y.; Zhao, H. L.; Tian, Z. H.; Qiu,W. H.; Li, X. J. Alloy. Compd. 2008, 455, 471.  
(18) Yu, Y.; Shui, J. L.; Chen, C. H. Solid State Commun. 2005, 135, 485.  
(19) Nakahara, K.; Nakajima, R.; Matsushima, T.; Majima, H. J. Power Sources 2003, 117, 131.  
(20) Hong, K. P.; Young, T. M.; Do, K. K.; Chong, H. K. J. Am. Ceram. Soc. 1996, 79, 2727.
(21) Allen, G. C.; Paul, M. Appl. Spectrosc. 1995, 49, 451.  
(22) Gao, L.; Chen, J. Y.; Huang, J. H.; Yan, D. S. J. Inorg. Mater. 1995, 10 (4), 421. [高濂, 陈锦元, 黄军华, 严东生. 无机材料学报, 1995, 10 (4), 421.]
(23) Lai, C.; Dou, Y. Y. ; Li, X.; Gao, X. P. J. Power Sources 2010, 195, 3676.  
(24) Rahman, M. M.;Wang, J. Z.; Hassan, M. F.; Chou, S. L.; Wexler, D.; Liu, H. K. J. Power Sources 2010, 195, 4297.  
(25) Yao, X. L.; Xie, S.; Chen, C. H.;Wang, Q. S.; Sun, J. H.; Li, Y. L.; Lu, S. X. Electrochim. Acta 2005, 50, 4076.  
[1] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Si.n, 2017, 33(7): 1421-1428.
[2] HE Yu, WANG Yi-Bo. B972-PFD: A High Accuracy Density Functional Method for Dispersion Correction[J]. Acta Phys. Chim. Si.n, 2017, 33(6): 1149-1159.
[3] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Si.n, 2017, 33(10): 2072-2081.
[4] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Si.n, 2017, 33(10): 1944-1959.
[5] DAWUT Gulbahar, LU Yong, ZHAO Qing, LIANG Jing, TAO Zhan-Liang, CHEN Jun. Quinones as Electrode Materials for Rechargeable Lithium Batteries[J]. Acta Phys. Chim. Si.n, 2016, 32(7): 1593-1603.
[6] SUN Meng-Ting, HUANG Bi-Chun, MA Jie-Wen, LI Shi-Hui, DONG Li-Fu. Morphological Effects of Manganese Dioxide on Catalytic Reactions for Low-Temperature NH3-SCR[J]. Acta Phys. Chim. Si.n, 2016, 32(6): 1501-1510.
[7] CAI Li-Li, WEN Yue-Hua, CHENG Jie, CAO Gao-Ping, YANG Yu-Sheng. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries[J]. Acta Phys. Chim. Si.n, 2016, 32(4): 969-974.
[8] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Phys. Chim. Si.n, 2016, 32(3): 717-722.
[9] SUN Xue-Mei, GAO Li-Jun. Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries[J]. Acta Phys. Chim. Si.n, 2015, 31(8): 1521-1526.
[10] SHI Xia-Xing, LIAO Shi-Xuan, YUAN Bing, ZHONG Yan-Jun, ZHONG Ben-He, LIU Heng, GUO Xiao-Dong. Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery[J]. Acta Phys. Chim. Si.n, 2015, 31(8): 1527-1534.
[11] WANG Qian-Wen, DU Xian-Feng, CHEN Xi-Zi, XU You-Long. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Phys. Chim. Si.n, 2015, 31(8): 1437-1451.
[12] SU Shuo-Jian, NULI Yan-Na, FEILURE Tuerxun, YANG Jun, WANG Jiu-Lin. Effects of Cathode Current Collectors on the Electrochemical Performance of Rechargeable Magnesium Batteries[J]. Acta Phys. Chim. Si.n, 2015, 31(1): 111-120.
[13] FEILURE Tuerxun, ZULIPIYA Shadike, NULI Yan-Na, YANG Jun, WANG Jiu-Lin. Pyrazolyl Magnesium Halide/Tetrahydrofuran Solutions for Rechargeable Magnesium Battery Electrolytes[J]. Acta Phys. Chim. Si.n, 2014, 30(9): 1634-1640.
[14] ZHOU Ying, WANG Dao-Long, XIAO Nan, HOU Yu-Chen, QIU Jie-Shan. Influence of Heat Treatment Temperature on the Structure and Electrochemical Performance of Asphaltene-Based B/N Co-Doped Porous Carbons[J]. Acta Phys. Chim. Si.n, 2014, 30(6): 1127-1133.
[15] LI Li, HU Zhong-Ai, YANG Yu-Ying, WU Hong-Ying, CUI Lu-Juan. Synthesis of a MnO2/NiCo2O4 Composite by Electrostatic Self-Assembly and Its Electrochemical Performance[J]. Acta Phys. Chim. Si.n, 2014, 30(5): 899-907.