Please wait a minute...
Acta Phys. Chim. Si.n  2011, Vol. 27 Issue (09): 2222-2226    DOI: 10.3866/PKU.WHXB20110918
Adsorption of Se(IV) onto Beishan Granite
GUO Zhi-Jun1,2, CHEN Zong-Yuan2, WU Wang-Suo2, LIU Chun-Li1, CHEN Tao1, TIAN Wen-Yu1, LI Chun1
1. Beijing National Laboratory for Molecular Sciences, Radiochemistry & Radiation Chemistry Key Laboratory for Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China;
2. School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
Download:   PDF(647KB) Export: BibTeX | EndNote (RIS)      

Abstract  The adsorption of Se(IV) onto crushed Beishan granite (BS03, 600 m) was studied by a batch experimental method. The results showed that the distribution coefficient (Kd) remained almost constant in the pH range of 3-7 and decreased at pH>7. The adsorption of Se(IV) did not vary with ionic strength. The presence of Ca2+ (4.10×10-3 mol·L-1) and SO42- (3.17×10-3 mol·L-1) had no effect on Se(IV) adsorption. Moreover, we found that the adsorption of Se(IV) (1.46×10-5 mol·L-1) and Eu(III) (3.33×10-6 mol·L-1) on Beishan granite had no effect on each other in the ternary adsorption system consisting of Se(IV)/Eu(III)/ granite. The adsorption of Se(IV) onto Beishan granite was quantitatively interpreted by considering the two surface complexation reactions of HseO3- to form ≡SHSeO3 and ≡SSeO3- on the ≡SOH general adsorption sites.

Key wordsBeishan granite      Adsorption      Selenium(IV)      Surface complexation model     
Received: 12 April 2011      Published: 12 July 2011
MSC2000:  O647.32  

The project was supported by the National Natural Science Foundation of China (10775008, 11075006,91026010,20971061), Research Fund for Ph. D Program of the Ministry of Education, China (20060001032), Special Foundation for High LevelWaste Disposal, China (2007-840), Fundamental Research Funds for the Central Universities, China, Analysis Foundation (16-18) of Peking University, China.

Corresponding Authors: LIU Chun-Li     E-mail:
Cite this article:

GUO Zhi-Jun, CHEN Zong-Yuan, WU Wang-Suo, LIU Chun-Li, CHEN Tao, TIAN Wen-Yu, LI Chun. Adsorption of Se(IV) onto Beishan Granite. Acta Phys. Chim. Si.n, 2011, 27(09): 2222-2226.

URL:     OR

(1) Chen, F.; Burns, P. C.; Ewing, R. C. J. Nucl. Mater. 1999, 275, 81.  
(2) Duc, M.; Lefevre, G.; Fedoroff, M. J. Colloid Interface Sci. 2006, 298, 556.  
(3) Catalano, J. G.; Zhang, Z.; Fenter, P.; Bedzyk, M. J. J. Colloid Interface Sci. 2006, 297, 665.  
(4) Su, C.; Suarez, D. L. Soil Sci. Soc. Am. J. 2000, 64, 101.  
(5) Peak, D. S.; Huang, U. Soil Sci. Soc. Am. J. 2006, 70, 192.  
(6) Neal, R. H.; Sposito, G.; Holtzclaw, K.; Traina, S. Soil Sci. Soc. Am. J. 1987, 51, 1161.  
(7) Neal, R. H.; Sposito, G.; Holtzclaw, K.; Traina, S. Soil Sci. Soc. Am. J. 1987, 51, 1165.  
(8) Sposito, G.; deWit, J.; Neal, R. H. Soil Sci. Soc. Am. J. 1988, 52, 947.  
(9) Jan, Y. L.;Wang, T. H.; Li, M. H.; Tsai, S. C.;Wei, Y. Y.; Teng, S. P. Appl. Radiat. Isotopes 2008, 66, 14.  
(10) Ticknor, K.; McMurry, J. Radiochim. Acta 1996, 73, 149.
(11) Jan, Y. L.;Wang, T. H.; Li, M. H.; Tsai, S. C.;Wei, Y. Y.; Hsu, C. N.; Teng, S. P. J. Radioanal. Nucl. Chem. 2007, 273, 299.  
(12) Papelis, C. Adv. Environ. Res. 2001, 5, 151.  
(13) de Llano, A. Y.; Bidoglio, G.; Avogadro, A.; Gibson, P.; Rivas Romero, P. J. Contam. Hydrol. 1996, 21, 129.  
(14) Wang, J.; Xu, G. Q.; Fan, X. H.; Zheng, H. L.;Wang, C. Z.; Fan, Z.W. Geological Disposal of High Level RadioactiveWaste in China: Progress in the Last Decade (1991-2000). In Geological Disposal of High Level Radioactive Waste in China: Progress in the Last Decade (1991-2000); Wang, J., Fan, X. H., Xu, G. Q., Zheng, H. L. Eds.; Atomic Energy Press: Beijing, 2004; pp 1-12. [王驹, 范显华, 徐国庆, 郑华铃, 王承祖, 范智文.中国高放废物地质处置十年进展. 见王驹, 范显华, 徐国庆, 郑华铃编. 中国高放废物地质处置十年进展. 北京: 原子能出版社, 2004: 1-12.]
(15) Guo, Z. J.; Chen, Z. Y.;Wu,W. S.; Liu, C. L.; Chen, T.; Tian,W. Y.; Li, C. Sci. China Ser. B-Chem. 2011, 41, 907. [郭治军, 陈宗元, 吴王锁, 刘春立, 陈涛, 田文宇, 黎春. 中国科学B 辑-化学, 2011, 41, 907.]
(16) Parkhurst, D. L.; Appelo, C.; Survey, G. User 's Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical Calculations; US Geological Survey, Water-Resources Investigation Report 99-4259, Denver, Colorado, USA, 1999.
(17) Hummel,W.; Berner, U.; Curti, E.; Pearson, F.; Thoenen, T. Nagra/PSI Chemical Thermodynamic Data Base 01/01; Universal-Publishers, Parkland, Florida, USA, 2002.
(18) Montavon, G.; Guo, Z.; Lützenkirchen, J.; Alhajji, E.; Kedziorek, M.; Bourg, A.; Grambow, B. Colloids and Surfaces A- Physicochemical and Engineering Aspects 2009, 332, 71.  
(19) Missana, T.; Alonso, U.; García-Gutiérrez, M. J. Colloid Interface Sci. 2009, 334, 132.  
(20) Chen, T.; Sun, M.; Li, C.; Tian,W. Y.; Liu, X.;Wang, L. H.; Wang, X.; Liu, C. L. Radiochim. Acta 2010, 98, 301.  
(21) Davis, J. A.; Meece, D. E.; Kohler, M.; Curtis, G. P. Geochim. Cosmochim. Acta 2004, 68, 3621.  
(22) Tertre, E.; Hofmann, A.; Berger, G. Geochim. Cosmochim. Acta 2008, 72, 1043.  
[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Si.n, 2018, 34(3): 286-295.
[2] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Si.n, 2017, 33(9): 1846-1854.
[3] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Si.n, 2017, 33(9): 1898-1904.
[4] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Si.n, 2017, 33(6): 1236-1241.
[5] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Si.n, 2017, 33(5): 960-967.
[6] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. Chim. Si.n, 2017, 33(4): 709-728.
[7] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. Chim. Si.n, 2017, 33(2): 426-434.
[8] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. Chim. Si.n, 2017, 33(10): 2013-2021.
[9] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Si.n, 2017, 33(10): 2029-2034.
[10] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. Chim. Si.n, 2017, 33(10): 2022-2028.
[11] LI Yan-Ting, LIU Xin-Min, TIAN Rui, DING Wu-Quan, XIU Wei-Ning, TANG Ling-Ling, ZHANG Jing, LI Hang. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Phys. Chim. Si.n, 2017, 33(10): 1998-2003.
[12] LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. Chim. Si.n, 2016, 32(9): 2264-2270.
[13] XING Lei, JIAO Li-Ying. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Phys. Chim. Si.n, 2016, 32(9): 2133-2145.
[14] JING Peng-Fei, LIU Hui-Jun, ZHANG Qin, HU Sheng-Yong, LEI Lan-Lin, FENG Zhi-Yuan. Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)[J]. Acta Phys. Chim. Si.n, 2016, 32(8): 1933-1940.
[15] JIAN Yuan, MU Wan-Jun, LIU Ning, PENG Shu-Ming. Removal of Sr2+ Ions by Ta-Doped Hexagonal WO3: Zeta Potential Measurements and Adsorption Mechanism Determination[J]. Acta Phys. Chim. Si.n, 2016, 32(8): 2052-2058.