Please wait a minute...
Acta Phys. -Chim. Sin.  2011, Vol. 27 Issue (10): 2379-2384    DOI: 10.3866/PKU.WHXB20110922
Preparation of High Performance Core-Shell PdRu@Pt/CNT Electrocatalyst
DANG Dai1, GAO Hai-Li1, PENG Liang-Jin1, SU Yun-Lan2, LIAO Shi-Jun1, WANG Ye1
1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China;
2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
Download:   PDF(804KB) Export: BibTeX | EndNote (RIS)      

Abstract  We prepared a low Pt loading core-shell structured catalyst PdRu@Pt/CNT (carbon nanotube) with a PdRu alloy as the core and platinum as the shell in addition to carbon nanotubes as supports in a two-stage precipitation-reduction approach. For the anodic oxidation of methanol the activity in terms of Pt loading increased by 70% compared with the lab-made Pt/CNT catalyst and the ratio of the forward current density (If) to the backward current density (Ib) was as high as 2, which is two times of that of Pt/ CNT, indicating that the dispersion and use of platinum effectively improves by covering the surface of the PdRu cores with platinum. Excellent tolerance towards the intermediates of the anodic oxidation of methanol may result from the interaction between the Pt shell and the PdRu core. The core-shell structure of the catalysts was revealed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The TEM image showed that the active components are highly dispersed on the CNT with a particle size of 4.0 nm. The high platinum utilization and high performance as well as good tolerance toward poisons make the PdRu@Pt/CNT catalyst a promising low-Pt catalyst for low temperature fuel cell applications.

Key wordsFuel cell      Methanol oxidation      Core-shell structure      Catalyst     
Received: 25 April 2011      Published: 15 July 2011
MSC2000:  O646  

The project was supported by the National University Student Innovation Program, China (081056118) and National Natural Science Foundation of China (20673040, 20876062, 21076089).

Corresponding Authors: LIAO Shi-Jun     E-mail:
Cite this article:

DANG Dai, GAO Hai-Li, PENG Liang-Jin, SU Yun-Lan, LIAO Shi-Jun, WANG Ye. Preparation of High Performance Core-Shell PdRu@Pt/CNT Electrocatalyst. Acta Phys. -Chim. Sin., 2011, 27(10): 2379-2384.

URL:     OR

(1) Baldauf, M.; Preidel,W. J. Power Sources 1999, 84, 161.  
(2) Luo, Y. L.; Liang, Z. X.; Liao, S. J. Chin. J. Catal. 2010, 31, 141.
[罗远来, 梁振兴, 廖世军. 催化学报, 2010, 31, 141.]
(3) Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.;Wang, H. J.; Wilkinson, D. P. J. Power Sources. 2006, 155, 95.  
(4) Cha, Q. X. Selected Topics of Electrochemical pPower Sources; Wuhan University Press:Wuhan, 2005; pp 1-150.
[查全性. 化学电源选论. 武汉: 武汉大学出版社, 2005: 1-150.]
(5) Chen, M.; Liao. S. J. Industrial Catalysis. 2008, No. 3, 1.
[谌敏, 廖世军. 工业催化, 2008, (3), 1]
(6) Murray, E. P.; Tsai, T.; Barnett. S. A. Nature 1999, 400, 649.  
(7) Fernández, J. L.; Raghuveer, V.; Manthiram, A.; Bard, A. J. J. Am. Chem. Soc. 2005, 127, 13100.  
(8) Shao, M. H.; Sasaki, K.; Adzic, R. R. J. Am. Chem. Soc. 2006, 128, 3526.  
(9) Lee, K.; Zhang, L.; Zhang, J. J. Electrochem. Commun. 2007, 9, 1704.  
(10) Wang, X.; Tang, Y.; Gao, Y.; Lu, Y. H. J. Power Sources 2008, 175, 784.  
(11) Shen, P. K.; Xu, C.W. Electrochem. Commun. 2006, 8, 184.  
(12) Nie, M.; Tang, H. L.;Wei, Z. D.; Jiang, S. P.; Shen, P. K. Electrochem. Commun. 2007, 9, 2375.  
(13) Sun, X. M.; Li, Y. D. Angew Chem. Int. Edit. 2004, 43, 597.  
(14) Zhou,W. J.; Lee, J. Y. Electrochem.Commun. 2007, 9, 1725.  
(15) Luo, J.;Wang, L.; Mott, D.; Njoki, P. N.; Lin, Y.; He, T.; Xu, Z.; Wanjana, B. N.; Lim, I. I. S.; Zhong, C. J. Adv. Mater. 2008, 20, 4342.  
(16) Wang H.; Xu, C.W.; Cheng, F. L.; Zhang, M.;Wang, S. Y.; Jiang, S. P. Electrochem Commun. 2008, 10, 1575.  
(17) Wu, Y. N.; Liao, S. J.; Liang, Z. X.; Yang, L. J.;Wang, R. F. J. Power Sources 2009, 194, 805.  
(18) Nilekar, A. U.; Alayoglu, S.; Eichhorn, B; Mavrikakis, M. J. Am. Chem. Soc. 2010, 132, 7418.  
(19) Guo, S. J.; Fang, Y. X.; Dong, S. J.;Wang E. K. J. Phys. Chem. C. 2007, 111, 17104.  
(20) Cui, Z. M.; Liu, C. P.; Liao, J. H.; Xing,W. Electrochimica Acta 2008, 53, 7807.  
(21) Watamabe, M.; Uchida, M.; Motoo, S. J. Electroanal. Chem. 1987, 229, 395
(22) Chetty, R.; Xia,W.; Kundu, S.; Bron, M.; Reinecke, T.; Schuhmann,W.; Muhler, M. Langmuir 2009, 25, 3853.  
(23) Bock, C.; Paquet, C.; Couillard, M.; Botton, G. A.; MacDougall, B. R. J. Am. Chem. Soc. 2004, 126, 8028.  
(24) Kua, J.; Goddard,W. A. J. Am. Chem. Soc. 1999, 121, 10928.  
(25) Wu, Y. N.; Liao, S. J.;Wang, N. K.; Chen, M.; Birss, V. Sci. China Ser. E 2010, 53, 264.  
[1] Zhe WANG,Shanjun MAO,Haoran LI,Yong WANG. How to Synthesize Vitamin E[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 598-617.
[2] Mingchuan LUO,Yingjun SUN,Yingnan Yingjun,Yong YANG,Dong WU,Shaojun GUO. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 361-376.
[3] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[4] Hengwei WANG,Junling LU. Atomic Layer Deposition: A Gas Phase Route to Bottom-up Precise Synthesis of Heterogeneous Catalyst[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1334-1357.
[5] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[6] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[7] Pei-Yi LIAO,Chen ZHANG,Li-Jun ZHANG,Yan-Zhang YANG,Liang-Shu ZHONG,Xiao-Ya GUO,Hui WANG,Yu-Han SUN. Influences of Cu Content on the Cu/Co/Mn/Al Catalysts Derived from Hydrotalcite-Like Precursors for Higher Alcohols Synthesis via Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1672-1680.
[8] Guo-Min LI,Bao-Shun ZHU,Li-Ping LIANG,Yu-Ming TIAN,Bao-Liang LÜ,Lian-Cheng WANG. Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1715-1720.
[9] Xiao-Qiang. WANG,Jiang. LIU,Yong-Min. XIE,Wei-Zi. CAI,Ya-Peng. ZHANG,Qian. ZHOU,Fang-Yong. YU,Mei-Lin. LIU. A High Performance Direct Carbon Solid Oxide Fuel Cell Stack for Portable Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1614-1620.
[10] Ling-Xiao HU,Lian WANG,Fei WANG,Chang-Bin ZHANG,Hong HE. Catalytic Oxidation of o-Xylene over Pd/γ-Al2O3 Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1681-1688.
[11] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[12] Yang ZHOU,Qing-Qing CHENG,Qing-Hong HUANG,Zhi-Qing ZOU,Liu-Ming YAN,Hui YANG. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1429-1435.
[13] Xiao ZHAI,Yi DING. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1366-1378.
[14] . Effects of CeO2 Addition on Improved NO Oxidation Activities of Pt/SiO2-Al2O3 Diesel Oxidation Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1242-1252.
[15] Shuai-Qi SUN,Yan-Hui YI,Li WANG,Jia-Liang ZHANG,Hong-Chen GUO. Preparation and Performance of Supported Bimetallic Catalysts for Hydrogen Production from Ammonia Decomposition by Plasma Catalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1123-1129.