Please wait a minute...
Acta Phys. Chim. Sin.  2011, Vol. 27 Issue (10): 2406-2410    DOI: 10.3866/PKU.WHXB20110929
Photocatalytic Activity of Cobalt Doped Titania for H2 Evolution
YAN Shi1, HUANG Qin-Dong1, LIN Jing-Dong1,2, YUAN You-Zhu1,2,3, LIAO Dai-Wei1,2,3
1. Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
2. National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, Xiamen 361005, Fujian Province, P. R. China
3. State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen 361005, Fujian Province, P. R. China
Download:   PDF(643KB) Export: BibTeX | EndNote (RIS)      

Abstract  Cobalt-doped titania (Co/TiO2) photocatalysts were synthesized by the polymerized complex method (PCM). The materials were characterized by thermogravimetric analysis-differential scanning calorimetry (TGA-DSC), Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), nitrogen adsorption-desorption, ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the samples was evaluated by hydrogen evolution. The results show that anatase type titania exists in the materials and cobalt is evenly dispersed. The activity of the cobalt doped titania was found to be superior to that of pure titania. The maximum activity obtained at 0.3% Co/Ti molar ratio was nearly 6 times as high as that of pure titania. The amount of hydrogen produced was up to 2499 μmol. The doping mechanism of cobalt is discussed.

Key wordsCobalt-doped      Titania      Polymerized complex method      Photocatalysis      H2 evolution     
Received: 01 April 2011      Published: 26 July 2011
MSC2000:  O643  

The project was supported by the National Key Basic Research Program of China (973) (2011CBA00508).

Corresponding Authors: LIN Jing-Dong     E-mail:
Cite this article:

YAN Shi, HUANG Qin-Dong, LIN Jing-Dong, YUAN You-Zhu, LIAO Dai-Wei. Photocatalytic Activity of Cobalt Doped Titania for H2 Evolution. Acta Phys. Chim. Sin., 2011, 27(10): 2406-2410.

URL:     OR

(1) Lewis, N.; Nocera, D. Proc. Natl. Acad. Sci. U. S. A. 2006, 113, 15729.
(2) Fox, M.; Dulay, M. Chem. Rev. 1993, 93, 341.  
(3) Kamat, P. J. Phys. Chem. C 2007, 111, 2834.  
(4) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253.  
(5) Osterloh, F. Chem. Mater. 2008, 20, 35.  
(6) Fujishima, A.; Honda, K. Nature 1972, 238, 37.  
(7) Hoffmann, M.; Martin, S.; Choi,W. Y.; Bahnemannt, D. Chem. Rev. 1995, 95, 69.  
(8) Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. Renew. Sust. Energ. Rev. 2007, 11, 401.  
(9) Liang,W. P.; Yang, J. L.; Chen, Y. J.; Li, C. Physical Chemistry in the New Century; Science Press: Beijing, 2004; pp 148-153.
[梁文平, 杨俊林, 陈拥军, 李灿. 新世纪的物理化学. 北京: 科学出版社, 2004: 148-153.]
(10) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.  
(11) Yu, Z. Y.; Zhang,W.; Ma, M.; Cui, X. L. Acta Phys. -Chim. Sin. 2009, 25, 35.
[余志勇, 张维, 马明, 崔晓莉. 物理化学学报, 2009, 25, 35.]
(12) Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Appl. Phys. Lett. 2002, 81, 454.  
(13) Jing, D.W.; Guo, L. J. J. Phys. Chem. Solids 2007, 68, 2363.  
(14) Kakihana, M.; Yoshimura, M. B. Chem. Soc. Jpn. 1999, 72, 1427.  
(15) Lin, H. Y.; Chang, Y. S. Int. J. Hydrogen Energ. 2010, 35, 8463.  
(16) Hu, C. C.; Teng, H. J. Catal. 2010, 272, 1.  
(17) Wu, Y. Q.; Lu, G. X.; Li, S. B. Chin. J. Inorg. Chem. 2005, 21, 309.
[吴玉琪, 吕功煊, 李树本. 无机化学学报, 2005, 21, 309.]
(18) Bascha, A.; Alberingb, J. J. Power Sources 2011, 196, 3290.  
(19) Dvoranova, D.; Brezova, V.; Mazur, M.; Malati, M. Appl. Catal. B -Environ. 2002, 37, 91.  
(20) Wu, S. X.; Ma, Z.; Qin, Y. N.; Qi, X. Z.; Liang, Z. C. Acta Phys. -Chim. Sin. 2004, 20, 138.
[吴树新, 马智, 秦永宁, 齐晓周, 梁珍成. 物理化学学报, 2004, 20, 138.]
(21) Choi,W. Y.; Termin, A.; Hoffmann, M. J. Phys. Chem. 1994, 98, 13669.  
(22) Soria, J.; Conesa, J.; Augugliaro, V.; Palmisano, L.; Schiavello, M.; Sclafani, A. J. Phys. Chem. 1991, 95, 274.
(23) Gratzel, M.; Howe, R. J. Phys. Chem. 1990, 94, 2566.  
[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[2] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[3] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[4] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[5] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[6] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[7] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[8] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[9] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.
[10] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1758-1764.
[11] ZHU Kai-Jian, YAO Wen-Qing, ZHU Yong-Fa. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1519-1526.
[12] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. Chim. Sin., 2016, 32(3): 728-736.
[13] HU Li-Fang, HE Jie, LIU Yuan, ZHAO Yun-Lei, CHEN Kai. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Phys. Chim. Sin., 2016, 32(3): 737-744.
[14] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. Chim. Sin., 2016, 32(2): 551-557.
[15] XU Zheng-Xia, YANG Ji-Tao, LIU Kang, GUO Xiao-Qiang. Shape Evolution Behavior of Anatase Titania Nanocrystals via the Solvothermal Method[J]. Acta Phys. Chim. Sin., 2016, 32(2): 581-588.