Please wait a minute...
Acta Phys. Chim. Sin.  2011, Vol. 27 Issue (10): 2319-2325    DOI: 10.3866/PKU.WHXB20110936
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Adsorption and Dissociation of CO2on the α-U(001) Surface
LI Gan1, LUO Wen-Hua1, CHEN Hu-Chi2
1. Key Laboratory for Surface Physics and Chemistry, Mianyang 621907, Sichuan Province, P. R. China;
2. China Academy of Engineering Physics, Mianyang 621900, Sichuan Province, P. R. China
Download:   PDF(841KB) Export: BibTeX | EndNote (RIS)      

Abstract  The adsorption and dissociation of CO2 on the α-U(001) surface at 0.25 monolayer (ML) coverage was studied using density functional theory (DFT) within the generalized gradient approximation (GGA). Stable structures and corresponding energies of CO2 adsorbed on the α-U(001) surface were obtained while the transition state and corresponding energy barrier for CO2 dissociation was determined. We discussed the interaction mechanism between CO2 and the α-U(001) surface. We found that CO2 strongly chemisorbed onto the α-U(001) surface in a multi-bonding manner with adsorption energies of 1.24-1.67 eV and the degree of C―O bond activation depended on the degree of electron transfer from surface to the adsorbed CO. The interaction between the U atoms and the CO2 molecules mainly comes from the population of the CO2 2πu lowest unoccupied molecular orbital (LUMO) by U electrons with CO2 2πu/1πg/3σu-U 6d orbital hybridization. The dissociative adsorption energies for the CO2 adsorbed on the hollow1 and hollow2 sites with three C―U bonds and six O―U bonds (H1-C3O6 and H2-C3O6 ) are 3.15 and 3.13 eV, respectively. The corresponding dissociation barriers are 0.26 and 0.36 eV, which indicates that the dissociation of adsorbed CO2 into CO and O occurs easily.

Key wordsDensity functional theory      &      alpha      -U(001) surface      Carbon dioxide      Adsorption     
Received: 28 April 2011      Published: 02 August 2011
MSC2000:  O641  
  O647  
Fund:  

The project was supported by the Key Laboratory Foundation of Science and Technology of National Defense, China (9140C6601010901) and Science and Technology Foundation of China Academy of Engineering and Physics (2008A0301013).

Corresponding Authors: LI Gan     E-mail: 2002ligan@sina.com
Cite this article:

LI Gan, LUO Wen-Hua, CHEN Hu-Chi. Adsorption and Dissociation of CO2on the α-U(001) Surface. Acta Phys. Chim. Sin., 2011, 27(10): 2319-2325.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20110936     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I10/2319

(1) McLean,W.; Colmenares, C. A.; Smith, R. L. Phys. Rev. B 1982, 25, 8.  
(2) Gouder, T.; Colmenares, C.; Naegele, J. R.; Verbist, J. Surf. Sci. 1989, 235, 280.
(3) Huda, M. N.; Ray, A. K. Int. J. Quantum Chem. 2004, 102, 98.
(4) Dholabhai, P. P.; Ray, A. K. J. Alloy. Compd. 2007, 444, 356.  
(5) Nie, J. L.; Xiao, H. Y.; Zu, X. T.; Fei, G. J. Phys: Condens. Matter 2008, 20, 445001.  
(6) Senanayake, S. D.; Soon, A.; Kohlmeyer, A.; Sohnel, T.; Idriss, H. J. Vac. Sci. Technol. 2005, A23, 1078.
(7) Li, G.; Luo,W. H.; Chen, H. C. Acta Phys. -Chim. Sin. 2010, 26, 1378.
[李赣, 罗文华, 陈虎翅.物理化学学报, 2010, 26, 1378.
(8) Blanter, M. S.; Glazkov, V. P.; Somenkov, V. A. The Physics of Metal and Metallography 2006, 101, 153.  
(9) Hohenberg, P.; Kohn,W. Phys. Rev. B 1964, 136, 864.  
(10) Kohn,W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133.  
(11) Delley, B. J. Chem. Phys. 2000, 113, 7756.  
(12) Delley, B. Int. J. Quant. Chem B 1998, 69, 423.  
(13) Perdew, J. P.;Wang, Y. Phys. Rev. B 1992, 45, 13244.  
(14) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.  
(15) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.: Condens. Matter 2002, 14, 2717.  
(16) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892.  
(17) Bell, S.; Crighton, J. S. J. Chem. Phys. 1984, 80, 2464.  
(18) Fischer, S; Karplus, M. Chem. Phys. Lett. 1992, 194, 252.  
(19) Barett, C. S.; Mueller, M. H.; Hittermann, R. L. Phys. Rev. 1963, 129, 6251.
(20) S?derlind, P. Phys. Rev. B 2002, 66, 085113.  
(21) Vitos, L.; Xiao, H. Y.; Gao, F.; Zu, X. T. J. Alloy. Compd. 2008, 476, 675.
(22) Lide, D. R. CRC Handbook of Chemistry and Physics; CRC Press:Boca Raton, 2003.
(23) Freund, H. J.; Messmer, R. P. Surf. Sci. 1986, 172, 1.  
(24) Storms, E. K.; Haber, A. J. J. Nucl. Mater. 1967, 23, 19.  
(25) Wyckoff, R.W. G. Crystal Structures 1; Interscience Press:New York, 1963.
[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. Chim. Sin., 2018, 34(3): 256-262.
[3] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[4] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. Chim. Sin., 2018, 34(3): 263-269.
[5] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[6] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[7] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1803-1810.
[8] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[9] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[10] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[11] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1310-1323.
[12] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[13] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1171-1180.
[14] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1043-1050.
[15] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.