Please wait a minute...
Acta Phys. Chim. Sin.  2011, Vol. 27 Issue (10): 2411-2415    DOI: 10.3866/PKU.WHXB20110937
CATALYSIS AND SURFACE SCIENCE     
Visible Light Induced Photocatalytic Activity of ZnCo2O4 Nanoparticles
CUI Bai1, LIN Hong2, ZHAO Xiao-Chong2, LI Jian-Bao2, LI Wen-Di3
1. Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK;
2. State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China;
3. Department of Material Physics and Chemistry, School of Materials Science and Engineering, University of Science & Technology Beijing, Beijing 100083, P. R. China
Download:   PDF(633KB) Export: BibTeX | EndNote (RIS)      

Abstract  ZnCo2O4 nanoparticles were synthesized by a co-precipitation decomposition method and their optical and photocatalytic properties were investigated. Their crystal structure and microstructures were characterized using X-ray diffraction (XRD), thermogravimetry (TG)/differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The ZnCo2O4 nanocrystallites obtained were single-phase with an average size of 10-20 nm. The optical bandgap energies of the nanoparticles were estimated to be 3.39 and 2.09 eV from the UV-Vis absorption spectrum. The ZnCo2O4 nanoparticles exhibited high photocatalytic activity for the degradation of methylene blue dye solution under visible light irradiation (λ>420 nm). The photocatalytic activity of the ZnCo2O4 nanoparticles is attributed to their ability to absorb bandgap photons under UV and visible light as well as their nanoscale particle size. Based on these experimental results, a possible band structure of ZnCo2O4 is proposed.

Key wordsPhotocatalysis      Nanostructure      Spinel oxide      Band structure      ZnCo2O4     
Received: 25 April 2011      Published: 08 August 2011
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (50572051, 50672041), National High-Tech Research and Development Program of China (863) (2006AA03Z218), and National Key Basic Research Program of China (973) (2007CB607504).

Corresponding Authors: LIN Hong     E-mail: hong-lin@tsinghua.edu.cn
Cite this article:

CUI Bai, LIN Hong, ZHAO Xiao-Chong, LI Jian-Bao, LI Wen-Di. Visible Light Induced Photocatalytic Activity of ZnCo2O4 Nanoparticles. Acta Phys. Chim. Sin., 2011, 27(10): 2411-2415.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20110937     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I10/2411

(1) Cui, B.; Lin, H.; Li, J. B.; Li, X.; Yang, J.; Tao, J. Adv. Funct. Mater. 2008, 18, 1440.  
(2) Cui, B.; Lin, H.; Liu, Y.; Li, J.; Sun, P.; Zhao, X.; Liu, C. J. Phys. Chem. C 2009, 113, 14083.  
(3) Tang, J.; Zou, Z.; Ye, J. Chem. Mater. 2004, 16, 1644.  
(4) Chi, B.; Li, J.; Yang, X.; Lin, H.;Wang, N. Electrochim. Acta 2005, 50, 2059.  
(5) Takada, T.; Kasahara, S.; Omata, K.; Yamada, M. Nippon Kagaku Kaishi 1994, 9, 793.
(6) Sharma, Y.; Sharma, N.; Rao, G. V. S.; Chowdari, B. V. R. Adv. Funct. Mater. 2007, 17, 2855.  
(7) Ai, C.; Yin, M.;Wang, C.; Sun, J. J. Mater. Sci. 2004, 39, 1077.  
(8) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.  
(9) Li, X.; Li, F. J. Phys. Chem. B 1999, 103, 4862.  
(10) Su, Y. L.; Li, Y.; Du, Y. X.; Lei, L. C. Acta Phys. -Chim. Sin. 2011, 27, 939.
[苏雅玲, 李轶, 杜瑛珣, 雷乐成. 物理化学学报, 2011, 27, 939.]
(11) Belhekar, A. A.; Awate, S. V.; Anand, R. Catal. Commun. 2002, 3, 453.  
(12) Min, S. X.;Wang, F.; Zhang, Z. M.; Han, Y. Q.; Feng, L. Acta Phys. -Chim. Sin. 2009, 25, 1303.
[敏世雄, 王芳, 张振敏, 韩玉琦, 冯雷. 物理化学学报, 2009, 25, 1303.]
(13) Tang, J.; Zou, Z.; Yin, J.; Ye, J. Chem. Phys. Lett. 2003, 382, 175.  
(14) Wang, D; Zou, Z.; Ye, J. Chem. Phys. Lett. 2003, 373, 191.  
(15) Valenzuela, M. A.; Bosch, P.; Jimenez-Becerrill, J.; Quiroz, O.; Paez, A. I. J. Photochem. Photobiol. A 2002, 148, 177.  
(16) Bessekhouad, Y.; Trari, M. Int. J. Hydrog. Energy 2002, 27, 357.  
(17) Wei, X.; Chen, D.; Tang,W. Mater. Chem. Phys. 2007, 103, 54.  
(18) Shi, J.; Cui, H.; Liang, Z.; Lu, X.; Tong, Y.; Su, C.; Liu, H. Energy Environ. Sci. 2011, 4, 466.  
(19) Chi, B.; Zhao, L.; Jin. T. J. Phys. Chem. C 2007, 111, 6189.  
(20) Bazuev, G. V.; Gyrdasova, O. I.; Grigorov, I. G.; Koryakova, O. V. Inorg. Mater. 2005, 41, 288.  
(21) Wang, X.; Chen, X. Y.; Gao, L. S.; Zheng, H. G.; Zhang, Z. D.; Qian, Y. T. J. Phys. Chem. B 2004, 108, 16401.  
(22) Kubelka, P.; Munk, F. Z. Tech. Phys. (Leipzig) 1931, 12, 593.
(23) Radaelli, P. G. New J. Phys. 2005, 7, 53.  
(24) Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Nature 2001, 414, 625.  
(25) Xu, P. C.; Liu, Y.;Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261.
[许平昌, 柳阳, 魏建红, 熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.]
(26) Hagfeldt, A.; Gr?tzel, M. Chem. Rev. 1995, 95, 49.  
[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[2] LI Jiao, CHEN Zhong. First-Principles Study on the Electronic and Photocatalytic Properties of Ag3XO4 (X = P, As, V)[J]. Acta Phys. Chim. Sin., 2017, 33(5): 941-948.
[3] ZHEN Xu, GUO Xue-Jing. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. Chim. Sin., 2017, 33(4): 845-852.
[4] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[5] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[6] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[7] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[8] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[9] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[10] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[11] LIANG Dong-Mei, LENG Xia, MA Yu-Chen. Quasiparticle Band Structures and Optical Properties of Graphitic Carbon Nitrides[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1967-1976.
[12] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.
[13] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1758-1764.
[14] LU Xiao-Qing, ZHAO Zi-Gang, LI Ke, WEI Shu-Xian, QU Yuan-Yuan, NIU Yong-Qiang, LIU Xue-Feng. First-Principles Investigation of the Structural and Photoelectronic Properties of CH3NH3PbxSn1-xI3 Mixed Perovskites[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1439-1445.
[15] ZHU Kai-Jian, YAO Wen-Qing, ZHU Yong-Fa. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1519-1526.