Please wait a minute...
Acta Phys. Chim. Sin.  2011, Vol. 27 Issue (10): 2340-2346    DOI: 10.3866/PKU.WHXB20111002
ELECTROCHEMISTRY AND NEW ENERGY     
Lanthanum Doped Manganese Dioxide/Carbon Nanotube Composite Electrodes for Electrochemical Supercapacitors
XUE Rong, YAN Jing-Wang, TIAN Ying, YI Bao-Lian
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P. R. China
Download:   PDF(870KB) Export: BibTeX | EndNote (RIS)      

Abstract  Although higher specific capacitances have been achieved for manganese dioxide/multi-walled carbon nanotubes (MnO2/MWCNTs), the low conductivity of MnO2 is still the main obstacle in increasing its loading or film thickness. Another problem is that the cycling stability of MnO2/MWCNTs is much lower than that of activated carbon electrodes. Therefore, this new type of electrode material is still limited in application until now. In this paper, lanthanum doped MnO2/MWCNTs composites were prepared by an in situ redox method. The surface morphology and phase structure of the as-prepared samples were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectrometry. The electrochemical properties were investigated by cyclic voltammetry (CV), galvanostatic charge/discharge, and electrochemical impedance spectroscopy (EIS). The La-doped MnO2 could be formed on the MWCNTs by the reduction of MnO4-. The resistance of the composite electrodes decreased because La doping increases the number of imperfections in the MnO2 lattice, which improves the electrical conductivity and the electrochemical activity of the electrode. La doping is, therefore, an effective way to overcome the intrinsic low electric conductivity of MnO2, which facilitates an increase in the loading or the film thickness of MnO2 without increasing electrode resistance. The major effect of La doping is a significant improvement in the charge/discharge cycling performance of a symmetric electrochemical supercapacitor with electrodes composed of MnO2/ MWCNTs. The specific capacitance of the composite electrodes was improved by La doping.

Key wordsSupercapacitor      Multi-walled carbon nanotube      Lanthanum      Manganese dioxide      Pseudocapacitance     
Received: 24 February 2011      Published: 15 August 2011
MSC2000:  O646  
Fund:  

The project was supported by the Important Directional Project of‘the Research and Exploration of Supercapacitor Storage System for Electric Vehicle’from Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.

Corresponding Authors: YAN Jing-Wang     E-mail: yanjw@dicp.ac.cn
Cite this article:

XUE Rong, YAN Jing-Wang, TIAN Ying, YI Bao-Lian. Lanthanum Doped Manganese Dioxide/Carbon Nanotube Composite Electrodes for Electrochemical Supercapacitors. Acta Phys. Chim. Sin., 2011, 27(10): 2340-2346.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20111002     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I10/2340

(1) Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum Publishers: New York, 1999.
(2) Burke, A. Electrochim. Acta 2007, 53, 1083.  
(3) Conway, B. E.; Pell,W. G. J. Solid State Electrochem. 2003, 7, 637.  
(4) Qu, D. Y.; Shi, H. J. Power Sources 1998, 74, 99.  
(5) Arabale, G.;Wagh, D.; Kulkarni, M.; Mulla, I. S.; Vernekar, S. P.; Vijayamohanan, K.; Rao, A. M. Chem. Phys. Lett. 2003, 376, 207.  
(6) Sharma, R. K.; Karakoti, A.; Seal, S.; Zhai, L. J. Power Sources 2010, 195, 1256.  
(7) Zein, S. H. S.; Yeoh, L. C.; Chai, S. P.; Mohamed, A. R.; Mahayuddin, M. E. M. J Mater. Process Technol. 2007, 190, 402.  
(8) Toupin, M.; Brousse, T.; Bélanger, D. Chem. Mater. 2004, 16, 3184.  
(9) Subramanian, V.; Zhu, H.W.;Wei, B. Q. Electrochem. Commun. 2006, 8, 827.  
(10) Shao, G. J.; Yao, Y.; Zhang, S. P.; He, P. Rare Metals 2009, 28, 132.  
(11) Man?i?, D.; Paunovi?, V.; Vijatovi?, M.; Stojanovi?, B.; ?ivkovi?, L. Science of Sintering 2008, 40, 283.  
(12) Ma, S. B.; Ahn, K. Y.; Lee, E. S.; Oh, K. H.; Kim, K. B. Carbon 2007, 45, 375.  
(13) Athou?l, L.; Moser, F.; Dugas, R.; Crosnier, O.; Bélanger, D.; Brousse, T. J. Phys. Chem. C 2008, 112, 7270.  
(14) Jin, X.; Zhou,W.; Zhang, S.; Chen, G. Z. Small 2007, 3, 1513.  
(15) Kovtyukhova, N. I.; Mallouk, T. E.; Pan, L.; Dickey, E. C. J. Am. Chem. Soc. 2003, 125, 9761.  
(16) Holzinger, M.; Vostrowsky, O.; Hirsch, A.; Hennrich, F.; Kappes, M.;Weiss, R.; Jellen, F. Angew Chem. Int. Edit. 2001, 40, 4002.  
(17) Kim, U. J.; Furtado, C. A.; Liu, X. M.; Chen, G. G.; Eklund, P. C. J. Am. Chem. Soc. 2005, 127, 15437.  
(18) Kuznetsova, A.; Mawhinney, D. B.; Naumenko, V.; Yates, J. T.; Liu, J.; Smalley, R. E. Chem. Phys. Lett. 2000, 321, 292.  
(19) Lu, K. L.; Lago, R. M.; Chen, Y. K.; Green, M. L. H.; Harris, P. J. F.; Tsang, S. C. Carbon 1996, 34, 814.  
(20) Xie, X. F.; Gao, L. Carbon 2007, 45, 2365.  
(21) White, A. M.; Slade, R. C. T. Electrochim. Acta 2004, 49, 861.  
(22) Masarapu, C.; Zeng, H. F.; Hung, K. H.;Wei, B. Q. ACS Nano 2009, 3, 2199.  
(23) Hu, C. C.;Wang, C. C. J. Electrochem. Soc. 2003, 150, A1079.
(24) Wu, M. S.; Chiang, P. C. J. Electrochemical and Solid State Letters 2004, 7, A123.
(25) Yan, J.; Fan, Z. J.;Wei, T.; Cheng, J.; Shao, B.;Wang, K.; Song, L. P.; Zhang, M. L. J. Power Sources 2009, 194, 1202.  
(26) Li, Y.; Xie, H. Q.;Wang, J. F.; Chen, L. F. Mater. Lett 2011, 65, 403.  
(27) Raymundo-Piñero, E.; Khomenko, V.; Frackowiak, E.; Béguin, F. J. Electrochem. Soc. 2005, 152, A229.
(28) Fang, D. L.;Wu, B. C.; Mao, A. Q.; Yan, Y.; Zheng, C. H. J. Alloy. Compd. 2010, 507, 526.  
(29) Wu, M.; Snook, G. A.; Chen, G. Z.; Fray, D. J. Electrochem. Commun. 2004, 6, 499.  
(30) Pourbaix, M. Atlas of electrochemical equilibria in aqueous solutions; National Association of Corrosion Engineers, 1974.
[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[3] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[4] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[5] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. Chim. Sin., 2017, 33(2): 329-343.
[6] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2510-2516.
[7] LI Dao-Yan, ZHANG Ji-Chen, WANG Zhi-Yong, JIN Xian-Bo. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2245-2252.
[8] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[9] LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, HAO Chang-Long, LU Chen-Guang, ZHU Yi-Hua, TANG Zhi-Yong. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(1): 130-148.
[10] BAI Shou-Li, LI Xin, WEN Yue-Hua, CHENG Jie, CAO Gao-Ping, YANG Yu-Sheng, LI Dian-Qing. Effect of Electrolyte on the Electrochemical Performance of the MnO2 Cathode for Aqueous Rechargeable Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2007-2017.
[11] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. Chim. Sin., 2016, 32(4): 975-982.
[12] LIN You-Cheng, ZHONG Xin-Xian, HUANG Han-Xing, WANG Hong-Qiang, FENG Qi-Peng, LI Qing-Yu. Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor[J]. Acta Phys. Chim. Sin., 2016, 32(2): 474-480.
[13] LI Ya-Jie, NI Xing-Yuan, SHEN Jun, LIU Dong, LIU Nian-Ping, ZHOU Xiao-Wei . Preparation and Performance of Polypyrrole/Nitric Acid Activated Carbon Aerogel Nanocomposite Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 493-502.
[14] WANG Yong-Fang, ZUO Song-Lin. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 481-492.
[15] ZHANG Jie, DOU Mei-Ling, WANG Feng, LIU Jing-Jun, LI Zhi-Lin, JI Jing, SONG Ye. Synthesis of PDDA-Decorating MWCNTs Supported Pt Electrocatalysts and Catalytic Properties for Oxygen Reduction Reaction in Alkaline Medium[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1727-1732.