Please wait a minute...
Acta Phys. Chim. Sin.  2011, Vol. 27 Issue (11): 2535-2540    DOI: 10.3866/PKU.WHXB20111006
Analysis and Assignment of the Fluorescence Spectra of a Salt/Methanol System
WU Xiao-Jing1, DAI Yun1, ZHANG Nan1, LI Jing2
1. School of Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China;
2. Institute for Geoanalysis of Anhui Province, Hefei 230001, P. R. China
Download:   PDF(1726KB) Export: BibTeX | EndNote (RIS)      

Abstract  Fluorescence spectra of CaCl2, LiCl, and Ca(NO3)2 in methanol were investigated and the structures and excitation energy of possible clusters were optimized by density functional theory (DFT) and time-dependent (TD) DFT theory with B3LYP method. Experimental results indicate that CaCl2 and LiCl are connected to methanol as clusters with good fluorescence properties. A strong increase in fluorescence intensity of CaCl2 and LiCl solutions was observed upon increasing their concentrations. The interaction between Ca(NO3)2 and methanol causes the fluorescence quenching of methanol. The results of the theoretical calculation show that [CaCl(CH3OH)n]+ and LiCl(CH3OH)n clusters strengthen the fluorescence intensity of the salt methanol solution and the oscillator strength of NO3- and the methanol clusters is almost zero. This illustrates the fluorescence quenching phenomenon of the NO3- anion and methanol.

Key wordsDensity functional theory      Salt/methanol cluster      Fluorescence quenching      Excitation wavelength     
Received: 17 June 2011      Published: 16 August 2011
MSC2000:  O645  
Corresponding Authors: WU Xiao-Jing     E-mail:
Cite this article:

WU Xiao-Jing, DAI Yun, ZHANG Nan, LI Jing. Analysis and Assignment of the Fluorescence Spectra of a Salt/Methanol System. Acta Phys. Chim. Sin., 2011, 27(11): 2535-2540.

URL:     OR

(1) Muhuri, P. K.; Das, B.; Hazra, D. K. J. Phys. Chem. B 1997, 101, 3329.  
(2) Bush, M. F.; Saykally, R. J.;Williams, E. R. J. Am. Chem. Soc. 2008, 130, 15482.  
(3) Johansson, P. Phys. Chem. Chem. Phys. 2007, 9, 1493.
(4) Megyes, T.; Grósz, T.; Radnai, T.; Bakó, I.; Pálinkás, G. J. Phys. Chem. A 2004, 108, 7261.  
(5) Pagliai, M.; Cardini, G.; Schettino, V. J. Phys. Chem. B 2005, 109, 7475.  
(6) Megyes, T.; Bálint, S.; Bakó, I.; Grósz, T.; Radnai, T.; Pálinkás, G. Chem. Phys. 2006, 327, 415.  
(7) Torii, H. J. Phys. Chem. A 1999, 103, 2843.  
(8) Yu, X. C.; Lin, K.; Hu, N. Y.; Zhou, X. G.; Liu, S. L. Acta Phys. -Chim. Sin. 2010, 26, 2473.
[余小春, 林珂, 胡乃银, 周晓国, 刘世林. 物理化学学报, 2010, 26, 2473.]
(9) Wahab, A.; Mahiuddin, S. J. Chem. Eng. Data 2009, 54, 436.
(10) Dr?ssler, P.; Holzer,W.; Penzkofer, A.; Hegemann, P. Chem. Phys. 2003, 286, 409.  
(11) Jiang, Z.; Deng, R.; Tang, L.; Lu, P. Sens. Actuators B Chem. 2008, 135, 128.  
(12) Welland, A. D.; Schneider, F.W.; Parusel, A. B. J. Chem. Phys. 1999, 240, 403.  
(13) Chen, G. Q.; Zhu, T.; Yu, R. P.;Wu, Y. M.; Liu, Y.; Ni, X.W. Opto-Electronic Engineering 2005, 32, 31.
[陈国庆, 朱拓, 虞锐鹏, 吴亚敏, 刘莹, 倪晓武. 光电工程, 2005, 32, 31.]
(14) Zhu, T.; Chen, G. Q.; Yu, R. P.; Liu, Y.; Ni, X.W. Laser Technology 2005, 29, 470.
[朱拓, 陈国庆, 虞锐鹏, 刘莹, 倪晓武. 激光技术, 2005, 29, 470.]
(15) Zhu, T.; Chen, G. Q.; Yu, R. P.; Liu, Y.; Ni, X.W. Opt Tech. 2006, 32, 11.
[朱拓, 陈国庆, 虞锐鹏, 刘莹, 倪晓武. 光学技术, 2006, 32, 11.]
(16) Chen, X. J.; Zhu, T. Acta Photonica Sinica 2008, 37, 1433.
[陈肖静, 朱拓. 光子学报, 2008, 37, 1433.]
(17) Zhao, Y. P.; Ai, H. Q.; Chen, J. P.; Yang, A. B.; Qi, Z. N. Acta Phys. -Chim. Sin. 2010, 26, 3322.
[赵永平, 艾洪奇, 陈金鹏, 杨爱彬, 齐中囡. 物理化学学报, 2010, 26, 3322.]
(18) Pour, N.; Gofer, Y.; Major, D. T.; Aurbach, D. J. Am. Chem. Soc. 2011, 133, 6270.  
(19) Furukawa, K.; Ohashi, K.; Imamura, T.; Sasaki, J.; Judai, K. Chem. Phys. Lett. 2010, 495, 8.  
(20) Fan, Y. B.; Gao, Y. Q. Acta Phys. -Chim. Sin. 2010, 26, 1034.
[范育波, 高毅勤. 物理化学学报, 2010, 26, 1034,]
(21) Casey, G.;Wentworth, G. R.; Hamilton, I. P.; Al-Abadleh, H. A. Computational and Theoretical Chemistry 2011, 965, 346.  
(22) Pye, C. C.; Rudolph,W.; Poirier, R. A. J. Phys. Chem. 1996, 100, 601.  
(23) Eilmes, A. J. Mol. Struct. -Theochem 2009, 915, 141.  
(24) Ohno, K.; Shimoaka, T.; Akai, N.; Katsumoto, Y. J. Phys. Chem. A 2008, 112, 7342.  
(25) Chen, Y. Y.;Wu, X. J.; Li, F. PTCA (Part B : Chem . Anal.) 2008, 44, 310.
[陈园园, 吴晓静, 李发. 理化检验, 2008, 44, 310.]
(26) Hay, B. P.; Gutowski, M.; Dixon, D. A.; Garza, J.; Vargas, R.; Moyer, B. A. J. Am. Chem. Soc. 2004, 126, 7925.  
(27) Marcus, Y.; Hefter, G. Chem. Rev. 2006, 106, 4585.  
[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. Chim. Sin., 2018, 34(3): 256-262.
[3] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. Chim. Sin., 2018, 34(3): 263-269.
[4] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[5] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[6] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1803-1810.
[7] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1310-1323.
[8] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1171-1180.
[9] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1010-1016.
[10] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1043-1050.
[11] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(4): 769-779.
[12] WU Yuan-Fei, LI Ming-Xue, ZHOU Jian-Zhang, WU De-Yin, TIAN Zhong-Qun. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Phys. Chim. Sin., 2017, 33(3): 530-538.
[13] WANG Wei, TAN Kai. Structure and Electronic Properties of Single Walled Nanotubes from AlAs(111) Sheets: A DFT Study[J]. Acta Phys. Chim. Sin., 2017, 33(3): 548-553.
[14] YAN Ren, LAI Lu, XU Zi-Qiang, JIANG Feng-Lei, LIU Yi. Thermodynamics of the Interactions between Quantum Dots and Proteins[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2377-2387.
[15] LI Gui-Xia, JIANG Yong-Chao, LI Peng, PAN Wei, LI Yong-Ping, LIU Yun-Jie. Helium Separation Performance of the Rhombic-Graphyne Monolayer Membrane: Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2219-2226.