Please wait a minute...
Acta Phys. Chim. Sin.  2011, Vol. 27 Issue (10): 2373-2378    DOI: 10.3866/PKU.WHXB20111008
ELECTROCHEMISTRY AND NEW ENERGY     
Preparation of High Catalytic Platinum Hollow Nanospheres and Their Electrocatalytic Performance for Methanol Oxidation
RAO Gui-Shi1, CHENG Mei-Qin1, ZHONG Yan1, DENG Xiao-Cong1, YI Fei1, CHEN Zhi-Ren1, ZHONG Qi-Ling1, FAN Feng-Ru2, REN Bin2, TIAN Zhong-Qun2
1. College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China;
2. State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
Download:   PDF(829KB) Export: BibTeX | EndNote (RIS)      

Abstract  Pt hollow nanospheres with a particle diameter of 110 nm and a shell thickness of about 5 nm were synthesized in bulk using selenium colloids with a particle diameter of 100 nm as a template. Transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), energy dispersive X-ray spectrocopy (EDX), and scanning electron microscopy (SEM) were used to determine their morphologies and structures. The electrocatalytic activity of the Pt hollow nanospheres modifying glassy carbon electrode toward methanol oxidation was measured by using methanol as the probe molecule. We show that the multiporous Pt hollow nanospheres composited of atomic clusters have a uniform particle size, good dispersity, a stable structure, a big surface area and good mass transfer performance. Cyclic voltammetry (CV) showed that when the current density of methanol oxidation was 0.10 mA·cm-2 and upon positive scanning the methanol oxidation potential of the Pt hollow nanospheres was around 110 and 64 mV negative than that of the Pt solid nanoparticles and Pt black, respectively. Upon negative scanning the former species was about 51 and 13 mV negative than that of the latter two species, respectively. After 800 segments cyclic voltammetry scanning, upon positive scanning the peak current density of methanol oxidation on the Pt hollow nanospheres was found to be 13 and 15 times as high as that of the Pt solid nanoparticles and Pt black, respectively. Upon negative scanning the former species was about 19 and 38 times as high as that of the two latter species. Our experimental results show that the Pt hollow nanospheres have good electrocatalytic activity and stability toward methanol oxidation.

Key wordsPlatinum hollow nanospheres      Selenium sphere template      Preparation      Electrocatalysis      Methanol oxidation     
Received: 29 March 2011      Published: 17 August 2011
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (20663002), Foundation of State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, China (200511) and Natural Science Foundation of Jiangxi Province, China (0620025).

Corresponding Authors: ZHONG Qi-Ling     E-mail: zhqiling@163.com
Cite this article:

RAO Gui-Shi, CHENG Mei-Qin, ZHONG Yan, DENG Xiao-Cong, YI Fei, CHEN Zhi-Ren, ZHONG Qi-Ling, FAN Feng-Ru, REN Bin, TIAN Zhong-Qun. Preparation of High Catalytic Platinum Hollow Nanospheres and Their Electrocatalytic Performance for Methanol Oxidation. Acta Phys. Chim. Sin., 2011, 27(10): 2373-2378.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20111008     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I10/2373

(1) Kuver, A.;Wielstih,W. J. Power Sources 1998, 74, 211.  
(2) Arico, A. S.; Srinivasan, S.; Antonucci, V. Fuel Cells 2001, 1, 133.  
(3) Hogarth, M. P.; Ralph, T. R. Platinum Metals Rev. 2002, 46, 146.
(4) Ren, X.; Zelenay, P.; Thomas, S.; Davey, J.; Gottesfeld, S. J. Power Sources 2000, 86, 111.  
(5) Witham, C. K.; Chun,W.; Valdez, T. I.; Narayanan, S. R. Electrochem. Solid State Lett. 2000, 3, 497.
(6) Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Science 1998, 280, 1735.  
(7) Cruickshank, J.; Scott, K. J. Power Source 1998, 70, 40.  
(8) Gurau, B.; Smotkin, E. S. J. Power Sources 2002, 112, 339.  
(9) Kauranen, P. S.; Skou, E. J. Electroanal. Chem. 1996, 408, 189.  
(10) Miyake, M.;Wainright, J. S.; Savinell, R. R. J. Electrochem. Soc. 2001, 148, A905.
(11) Hobson, L. J.; Nakano, Y.; Ozq, H.; Hayase, S. J. Power Sources 2002, 104, 79.  
(12) Mikhaylova, A. A.; Khazova, O. A. J. Electroanal. Chem. 2000, 225, 480.
(13) Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226.  
(14) Nabika, H.; Deki, S. J. Phys. Chem. B 2003, 107, 9161.  
(15) Schmid, G. Clusters anc Colloids: From Theory to Application; VCH:Weinheim, 1994.
(16) Yu, A.; Liang, Z. J.; Cho, J. H.; Caruso, F. Nano Lett. 2003, 3, 1203.  
(17) Stamm, K. L.; Garno, J. C.; Liu, G. Y.; Brock, S. L. J. Am. Chem. Soc. 2003, 125, 4036.  
(18) Alivisatos, A. P. Science 1996, 271, 933.  
(19) El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257.  
(20) Hu, J. T.; Odom, T.W.; Lieber, C. M. Accounts Chem. Res. 1999, 32, 435.  
(21) Sun, Y. G.; Xia, Y. N. Science 2002, 298, 2176.  
(22) Hu, J. Q.; Zhang, Y.; Liu, B.; Liu, J. X.; Zhou, H. H.; Xu, Y. F.; Jiang, Y. X.; Yang, Z. L.; Tian, Z. Q. J. Am. Chem. Soc. 2004, 126, 9470.  
(23) Teng, X.W.; Black, D.;Watkins, N. J.; Gao, Y. L.; Yang, H. Nano Lett. 2003, 3, 261.  
(24) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.;Wang, Z. L. Science 2007, 316, 732.  
(25) Zhang, B.; Li, J. F.; Zhong, Q. L.; Ren, B.; Tian, Z. Q.; Zou, S. Z. Langmuir 2005, 21, 7449.  
(26) Mayers, B.; Jiang, X.; Sunderland, D.; Cattle, B.; Xia, Y. J. Am. Chem. Soc. 2003, 125, 13364.  
(27) Guo, S. J.; Dong, S. J.;Wang, E. K. J. Phys Chem. C 2009, 113, 5485.  
(28) Kim, S.W.; Kim, M.; Lee,W. Y.; Hyeon, T. J. Am. Chem. Soc. 2002, 124, 7642.  
(29) Sun, Y.; Xia, Y. Anal. Chem. 2002, 74, 5297.  
(30) Caruso, F. O. Chem. Eur. J. 2000, 6 (3), 413; Adv. Mater. 2001, 13 (1), 11.
(31) Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.;Wan, L. J.; Bai, C. L. Angew. Chem. Int. Edit. 2004, 43, 1540.  
(32) Chem, Z.W.;Waje, M.; Li,W. Z.; Yan, Y. S. Angew. Chem. 2007, 119, 4138.
(33) Iida, M.; Sasaki, T.;Watanabe, M. Chem. Mater. 1998, 10, 3780.  
(34) Liu, J. G.;Wilcox, D. L. J. Mater. Res. 1994, 10,84.
(35) Hotz, J.; Meier,W. Langmuir 1998, 14, 1031.  
(36) Fowler, C. E.; Khushalani, D. D.; Mann, S. Chem. Commun. 2001, 19, 2028.
(37) Zhao, M.; Sun, L.; Crooks, R. M. J. Am. Chem. Soc. 1998, 120, 4877.  
(38) Xu, H. L.;Wang,W. Z. Angew. Chem. Int. Edit. 2007, 46, 1.  
(39) Wijnhoven, J. E. G.; Vos,W. L. Science 1998, 281, 802.  
(40) Caruso, F.; Caruso, R. A. Science 1998, 282, 1111.  
(41) Velev, O. D.; Kaler, E.W. Adv. Mater. 2000, 12, 531.  
(42) Kim, S.W.; Kim, M.; Lee,W. Y.; Hyeon, T. J. Am. Chem. Soc. 2002, 124, 7642.  
(43) Graf, C.; Blaaderen, A. Langmuir 2002, 18, 524.  
(44) Zhang, J. H.; Zhan, P.; Liu, H. Y.;Wang, Z. L.; Ming, N. B. Mater. Lett. 2006, 60, 280.  
(45) Sun, Y.; Mayers, B.T.; Xia, Y. Nano Lett. 2002, 2, 481.  
(46) Teranishi, H.; Hosoe, M.; Miyake, M. Adv. Mater. 1997, 9, 65.  
(47) Xia, Y.; Gates, B.; Yin, Y.; Lu. Y. Adv. Mater. 2000, 12, 693.  
(48) Yan, L. L.; Jiang, Q. N.; Liu, D. Y.; Zhong, Y.;Wen, F. P.; Deng, X. C.; Zhong, Q. L.; Ren, B.; Tian, Z. Q. Acta Phys. -Chim. Sin. 2010, 26 (9), 2337.
[颜亮亮, 江庆宁, 刘德宇, 钟艳, 温飞鹏, 邓小聪, 钟起玲, 任斌, 田中群. 物理化学学报, 2010, 26 (9), 2337.]
(49) Trasatti, S.; Petrii,O. A. Pure Appl. Chem. 1991, 63, 711.
(50) Sun, S. G.; Chen, A. C.; Huang, T. S.; Li, J. B.; Tian, Z.W. J. Electroanal. Chem.1992, 213, 340.
[1] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[2] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[3] ZHANG Ying-Jie, ZHU Zi-Yi, DONG Peng, QIU Zhen-Ping, LIANG Hui-Xin, LI Xue. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1085-1107.
[4] WU Qian, WENG Wei-Zheng, LIU Chun-Li, HUANG Chuan-Jing, XIA Wen-Sheng, WAN Hui-Lin. Effect of Preparation Methods on Photo-Induced Formation of Peroxide Species on Nd2O3[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2064-2071.
[5] XUAN Cui-Juan, WANG Jie, ZHU Jing, WANG De-Li. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis[J]. Acta Phys. Chim. Sin., 2017, 33(1): 149-164.
[6] SUN Meng, LI Jing-Hong. Recent Progress on Palladium-Based Oxygen Reduction Reaction Electrodes for Water Treatment[J]. Acta Phys. Chim. Sin., 2017, 33(1): 198-210.
[7] CHANG Qiao-Wan, XIAO Fei, XU Yuan, SHAO Min-Hua. Core-Shell Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(1): 9-17.
[8] JIANG Tao, TIAN Jie, WANG Ning, PENG Shu-Ming, LI Mei, HAN Wei, ZHANG Mi-Lin. Preparation of Mg-Zr Alloys in KCl-MgCl2-K2ZrF6-ZrO2 Molten System[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2301-2308.
[9] ZHANG Xue, HAN Yang, CHAI Shuang-Zhi, HU Nan-Tao, YANG Zhi, GENG Hui-Juan, WEI Hao. Advances in Cu2ZnSn(S,Se)4 Thin Film Solar Cells[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1330-1346.
[10] WANG Han, WANG Xiao-Min. Effect of Preparation Conditions on the Optical Properties of PEI-Functionalized Graphene Quantum Dots[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1267-1272.
[11] LIU Jian-Hong, Lü Cun-Qin, JIN Chun, WANG Gui-Chang. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Phys. Chim. Sin., 2016, 32(4): 950-960.
[12] WU Hong-Ying, ZHONG Jing-Rong, LI Ying-Qiu, WANG Shao-Fei. Preparation and Ultraviolet-Visible Absorption Spectra of Pu(III), Pu(IV) and Pu(VI) in Hydrochloric Acid[J]. Acta Phys. Chim. Sin., 2015, 31(Suppl): 49-53.
[13] JIN Huan, WANG Juan, JI Yun, CHEN Mei-Mei, ZHANG Yi, WANG Qi, CONG Yan-Qing. Synthesis of Ta/Al-Fe2O3 Film Electrode and Its Photoelectrocatalytic Performance in Methylene Blue Degradation[J]. Acta Phys. Chim. Sin., 2015, 31(5): 955-964.
[14] LI Li-Xiang, ZHAO Hong-Wei, XU Wei-Wei, ZHANG Yan-Qiu, AN Bai-Gang, GENG Xin. Preparation and Electrocatalytic Performance of Iron Based Nitrogen Doped Carbon Nanotubes[J]. Acta Phys. Chim. Sin., 2015, 31(3): 498-504.
[15] GAO Hai-Li, LI Xiao-Long, HE Wei, GUO Rui-Ting, CHAI Bo. One-Step Synthesis of Reduced Graphene Oxide Supported Pt Nanoparticles and Its Electrocatalytic Activity for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2117-2123.