Please wait a minute...
Acta Phys. -Chim. Sin.  2011, Vol. 27 Issue (10): 2333-2339    DOI: 10.3866/PKU.WHXB20111022
ELECTROCHEMISTRY AND NEW ENERGY     
Fabrication and Electrochemical Capacitive Behavior of Freestanding Graphene/Polyaniline Nanofibre Film
LU Xiang-Jun, DOU Hui, YANG Su-Dong, HAO Liang, ZHANG Fang, ZHANG Xiao-Gang
College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
Download:   PDF(718KB) Export: BibTeX | EndNote (RIS)      

Abstract  A freestanding film composed of graphene (GN) sheets and polyaniline (PANI) nanofibres was fabricated by reducing a graphite oxide (GO)/PANI precursor that was prepared by flow-directed assembly from a complex dispersion of GO and PANI. This was followed by reoxidation and redoping of the reduced PANI in the composite to restore the conducting PANI structure. A scanning electron microscope (SEM) image indicates that the GN/PANI film is a layered structure with PANI nanofibres uniformly sandwiched between the GN sheets. In the composite film, the PANI nanofibres can increase the basal spacing between GN sheets. Therefore, electrolyte ions have better accessibility to the GN surfaces. The GN sheets can act as current collector to decrease the inner resistance of the electrode, which is convenient for electronic and ionic transportation during the redox process of PANI. The electrochemical properties of the freestanding GN/PANI film were estimated by cyclic voltammetry and galvanostatic charge-discharge in 1 mol·L-1 HCl electrolyte. Electrochemical analysis demonstrates that the as-prepared GN/PANI film has good capacitive behavior. The specific capacitance was 495 F·g-1 at a current density of 0.1 A·g-1 and the capacitance was 313 F·g-1 even at a current density of 3 A·g-1. After 2000 cycles, the capacitance of the GN/PANI film decreases 10% of its initial capacitance, which demonstrates that the GN/PANI electrode has good cycle stability.

Key wordsGraphene      Polyaniline      Supercapacitor      Freestanding electrode     
Received: 03 June 2011      Published: 23 August 2011
MSC2000:  O646  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2007CB209703) and National Natural Science Foundation of China (20873064).

Corresponding Authors: DOU Hui, ZHANG Xiao-Gang     E-mail: dh_msc@nuaa.edu.cn; azhangxg@nuaa.edu.cn
Cite this article:

LU Xiang-Jun, DOU Hui, YANG Su-Dong, HAO Liang, ZHANG Fang, ZHANG Xiao-Gang. Fabrication and Electrochemical Capacitive Behavior of Freestanding Graphene/Polyaniline Nanofibre Film. Acta Phys. -Chim. Sin., 2011, 27(10): 2333-2339.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB20111022     OR     http://www.whxb.pku.edu.cn/Y2011/V27/I10/2333

(1) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.  
(2) Armand, M.; Tarascon, J. M. Nature 2008, 451, 652.  
(3) Kang, B.; Ceder, G. Nature 2009, 458, 190.  
(4) Zhang, H.; Cao, G. P.; Yang, Y. S. Energy Environ. Sci. 2009, 2, 932.  
(5) Zhang, H.; Cao, G. P.;Wang, Z. Y.; Yang, Y. S.; Shi, Z. J.; Gu, Z. N. Electrochem. Commun. 2008, 10, 1056.  
(6) Meng, C. Z.; Liu, C. H.; Fan, S. S. Electrochem. Commun. 2009, 11, 186.  
(7) Yang, Y. H.; Sun, H. J.; Peng, T. J.; Huang, Q. Acta Phys. -Chim. Sin. 2010, 27, 736. [杨勇辉, 孙红娟, 彭同江, 黄桥. 物理化学学报, 2010, 27, 736.]
(8) Yu, A. P.; Roes, I.; Davies, A.; Chen, Z.W. Appl. Phys. Lett. 2010, 96, 253105.  
(9) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26, 2073.]
(10) Yan, X. B.; Chen, J. T.; Yang, J.; Xue, Q. J.; Miele, P. ACS Appl. Mater. Interf. 2010, 2, 2521.  
(11) Li, H. L.;Wang, J. X.; Chu, Q. X.; Chu, Z.W.; Zhang, F. B.; Wang, S. C. J. Power Sources 2009, 190, 578.  
(12) Zhang, K.; Zhang, L. L.; Zhao, X. S.;Wu, J. S. Chem. Mater. 2010, 22, 1392.  
(13) Wang, D.W.; Li, F.; Zhao, J. P.; Ren,W. C.; Chen, Z. G.; Tan, J.;Wu, Z. S.; Gentle, I.; Lu, G. Q.; Cheng, H. M. ACS Nano 2009, 3, 1745.  
(14) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.  
(15) Jimenez, P.; Maser,W. K.; Castell, P.; Martinez, M. T.; Benito, A. M. Macromol. Rapid Commun. 2009, 30, 418.  
(16) Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.;Wallace, G. G. Nat. Nanotechnol. 2008, 3, 101.  
(17) Kane-Maguire, L. A. P.; MacDiarmid, A. G.; Norris, I. D.; Wallace, G. G.; Zheng,W. G. Synth. Met. 1999, 106, 171.  
(18) Wang, H. L.; Hao, Q. L.; Yang, X. J.; Lu, L. D.;Wang, X. ACS Appl. Mater. Interf. 2010, 2, 821.  
(19) Huang, J. X.; Kaner, R. B. J. Am. Chem. Soc. 2004, 126, 851.  
(20) Pei, S. F.; Zhao, J. P.; Du, J. H.; Ren,W. C.; Cheng, H. M. Carbon 2010, 48, 4466.  
(21) Lu, X. J.; Dou, H.; Gao, B.; Yuan, C. Z.; Yang, S. D.; Hao, L.; Shen, L. F.; Zhang, X. G. Electrochim. Acta 2011, 56, 5115.  
(22) Gao, B.; Fu, Q. B.; Su, L. H.; Yuan, C. Z. Zhang, X. G. Electrochim. Acta 2010, 55, 2311.  
[1] Xiangyan SHEN,Jianjiang HE,Ning WANG,Changshui HUANG. Graphdiyne for Electrochemical Energy Storage Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1029-1047.
[2] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[3] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[4] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[5] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[6] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[7] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[8] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[9] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[10] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[11] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[12] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 520-529.
[13] . Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 329-343.
[14] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[15] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 305-313.