Please wait a minute...
Acta Phys. -Chim. Sin.  2011, Vol. 27 Issue (11): 2593-2599    DOI: 10.3866/PKU.WHXB20111104
ELECTROCHEMISTRY AND NEW ENERGY     
Improvement of LiNi1/3Co1/3Mn1/3O2 Cathode Materials by Nano-MgO Doping
LI Jie-Bin1,2, XU You-Long1, XIONG Li-Long1, WANG Jing-Ping1
1. International Center for Dielectric Research, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China;
2. Shaanxi Applied Physics and Chemistry Research Institute, Xi'an 710061, P. R. China
Download:   PDF(2573KB) Export: BibTeX | EndNote (RIS)      

Abstract  Nano-sized M3O4 (M=Ni1/3Co1/3Mn1/3) powder with a spinel structure was prepared by sintering co-precipitated M(OH)2 at 500°C for 5 h. The so-obtained M3O4 was then mixed with LiOH and different amounts of nano-MgO. The mixture was sintered at 850°C for 24 h to synthesize Li(Ni1/3Co1/3Mn1/3)1-xMgxO2 (x=0, 0.01, 0.02, 0.03, 0.04,0.05) cathode materials. The lattice parameters increased while the diffusion coefficients of Li+ ion showed an increasing and then decreasing trend with an increase in the amount of Mg substitution. Li(Ni1/3Co1/3Mn1/3)0.98Mg0.02O2 had the highest Li+ ion diffusion coefficients, which were 29.20× 10-11 cm2·s-1 for Li+ de-intercalation and 4.760×10-11 cm2·s-1 for Li+ intercalation. Its discharge capacity at 3C rate was 139.3 mAh·g-1, which is 9.5 mAh·g-1 higher than that of the pristine material. Furthermore, its cycle performance was also improved significantly compared with the un-doped counterpart.

Key wordsLithium ion battery      Cathode material      LiNi1/3Co1/3Mn1/3O2      Mg-doping      Diffusion coefficient of Li+ ion     
Received: 07 June 2011      Published: 29 August 2011
MSC2000:  O646  
Corresponding Authors: XU You-Long     E-mail: ylxuxjtu@mail.xjtu.edu.cn
Cite this article:

LI Jie-Bin, XU You-Long, XIONG Li-Long, WANG Jing-Ping. Improvement of LiNi1/3Co1/3Mn1/3O2 Cathode Materials by Nano-MgO Doping. Acta Phys. -Chim. Sin., 2011, 27(11): 2593-2599.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB20111104     OR     http://www.whxb.pku.edu.cn/Y2011/V27/I11/2593

(1) Ohzuku, T.; Makimura, Y. Chem. Lett. 2001, 7, 642.
(2) Hwang, B. J.; Tsai, Y.W.; Carlier, D.; Ceder, G. Chem. Mater. 2003, 15, 3676.  
(3) Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R. Electrochim. Acta 2002, 48, 145.  
(4) Lee, M. H.; Kang, Y.; Myung, S. T.; Sun, Y. K. Electrochim. Acta 2004, 50, 939.  
(5) Wu, F.;Wang, M.; Su, Y. F.; Chen. S. Acta Phys. -Chim. Sin. 2009, 25(4), 629. [吴峰, 王萌, 苏岳峰, 陈实. 物理化学学报, 2009, 25(4), 629.]
(6) Chen, J.;Wang, S.; Whittingham, M. S. J. Power Sources 2007, 174, 442.  
(7) Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. J. Power Sources 2006, 159, 263.  
(8) Chebiam, R. V.; Prado, F.; Manthiram, A. Chem. Mater. 2001, 13, 2951.  
(9) Chen, Y. H.; Chen, R. Z.; Tang, Z. Y.;Wang, L. J. Alloys Compd. 2009, 476, 539.  
(10) Ding, Y. H.; Zhang, P.; Jiang, Y.; Gao, D. S. Solid State Ionics 2007, 178(13-14), 967.  
(11) Luo,W. B.; Li, X. H.; Dahn, J. R. J. Electrochem. Soc. 2010, 157 (7), A782.
(12) Luo,W. B.; Li, X. H.; Dahn, J. R. Chem. Mater. 2010, 22(17), 5065.  
(13) Kim, G. H.; Myung, S. T.; Kim, H. S.; Sun, Y. K. Electrochim. Acta 2006, 51 (12), 2447.  
(14) Oh, S.W.; Park, S. H.; Amine, K.; Sun, Y. K. J. Power Sources 2006, 160, 558.  
(15) Hwang, B. J.; R. Santhanam, C. H. Chen. J. Power Sources 2003, 114, 244.  
(16) Alcantara, R.; Lavela, P.; Tirado, J. L.; Stoyanova, R.; Zhecheva, E. J. Electrochem. Soc. 1998, 145, 730.
(17) Tang, Z. Y.; Xue, J. J.; Li, J. G.;Wang Z. L. Acta Phys. -Chim. Sin. 2001, 17 (6), 526. [唐致远, 薛建军, 李建刚, 王占良. 物理化学学报, 2001, 17 (6), 526.]
(18) Xia, H.; Lu, L.; Lai, M. O. Electrochim. Acta 2009, 54: 5986.
(19) Ni, J. F.; Zhou, H. H.; Chen, J. T.; Zhang, X. X. Electrochim. Acta 2007, 53, 3075.
(20) Li, J. G.;Wan, C. R.; Yang, D. P.; Yang, Z. P. Acta Phys. -Chim. Sin. 2003, 19 (11), 1030. [李建刚, 万春荣, 杨冬平, 杨张平. 物理化学学报, 2003, 19 (11), 1030.]
[1] Yanhuan CHEN,Jiaofu LI,Huibiao LIU. Preparation of Graphdiyne-Organic Conjugated Molecular Composite Materials for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1074-1079.
[2] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597.
[3] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1605-1613.
[4] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1189-1196.
[5] Wan-Long LI,Yue-Jiao LI,Mei-Ling CAO,Wei QU,Wen-Jie QU,Shi CHEN,Ren-Jie CHEN,Feng WU. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2261-2267.
[6] Ya-Dong LI,Yu-Feng DENG,Zhi-Yi PAN,Yin-Ping WEI,Shi-Xi ZHAO,Lin GAN. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2293-2300.
[7] Yong-Jin FANG,Zhong-Xue CHEN,Xin-Ping AI,Han-Xi YANG,Yu-Liang CAO. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 211-241.
[8] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2287-2292.
[9] Wen LUO,Lei HUANG,Dou-Dou GUAN,Ru-Han HE,Feng LI,Li-Qiang MAI. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1999-2006.
[10] Ai-Ming WU,Guo-Feng XIA,Shui-Yun SHEN,Jie-Wei YIN,Ya MAO,Qing-You BAI,Jing-Ying XIE,Jun-Liang ZHANG. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1866-1879.
[11] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1489-1494.
[12] Zu-Guang YANG,Wei-Bo HUA,Jun ZHANG,Jiu-Hua CHEN,Feng-Rong HE,Ben-He ZHONG,Xiao-Dong GUO. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1056-1061.
[13] Jian-Wen KOU,Zhao WANG,Li-Ying BAO,Yue-Feng SU,Yu HU,Lai CHEN,Shao-Yu XU,Fen CHEN,Ren-Jie CHEN,Feng-Chun SUN,Feng WU. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 717-722.
[14] Ting LI,Zhi-Hui LONG,Dao-Hong ZHANG. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 573-580.
[15] Shou-Pu ZHU,Tian WU,Hai-Ming SU,Shan-Shan QU,Yong-Juan XIE,Ming CHEN,Guo-Wang DIAO. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2737-2744.