Please wait a minute...
Acta Phys. Chim. Sin.  2011, Vol. 27 Issue (12): 2857-2862    DOI: 10.3866/PKU.WHXB20112857
PtSnCo/C Anode Catalyst for Methanol Oxidation
LI Qing-Wu, WEI Zi-Dong, CHEN Si-Guo, QI Xue-Qiang, LIU Xiao, DING Wei, MAYu
State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Chemistry andChemical Engineering, Chongqing University, Chongqing 400044, P. R. China
Download:   PDF(1863KB) Export: BibTeX | EndNote (RIS)      

Abstract  A binary metallic catalyst (PtSn/C) and a ternary metallic catalyst (PtSnCo/C) with a metal mass fraction of 20% were prepared by borohydride reduction and subsequent hydrothermal treatment in a glycol liquid phase. The structure and composition of the as-prepared electrocatalysts were characterized by X-ray diffraction (XRD) and energy-dispersive spectrometry (EDS). Their activity and stability for the catalysis of methanol oxidation were evaluated by anodic linear sweep voltammetry (LSV), cyclic voltammetry (CV), and the anodic stripping of a pre-adsorbed CO monolayer. We found that the PtSnCo/C catalyst gave the best catalytic activity for the methanol oxidation of all the catalysts including the commercial JM-PtRu/C catalyst. After 100 cycles, the peak current of methanol oxidation for the PtSn/C catalyst rapidly decreased to 11% of its initial peak current but PtSnCo/C decreased to only 50%. This result suggests that the PtSnCo/C catalyst has better chemical stability for the catalysis of methanol oxidation compared to the PtSn/C catalyst. The more negative onset potential of methanol oxidation for the PtSnCo/C catalyst relative to pre-adsorbed CO oxidation implies that the intermediates of methanol oxidation on the PtSnCo/C catalyst may be ones, which can be more easily oxidized than CO, instead of CO.

Key wordsDierct methanol fuel cell      PtSnCo/C      PtSn/C      Stability      Methanol oxidation     
Received: 04 May 2011      Published: 05 September 2011
MSC2000:  O643.36  

The project was supported by the National Natural Science Foundation of China (20906107, 20936008), Innovative Talent Training Project, Chongqing University, China (101061136), and Fundamental Research Funds for the Central University, China (CDJXS10221141, 11132229).

Corresponding Authors: WEI Zi-Dong     E-mail:
Cite this article:

LI Qing-Wu, WEI Zi-Dong, CHEN Si-Guo, QI Xue-Qiang, LIU Xiao, DING Wei, MAYu. PtSnCo/C Anode Catalyst for Methanol Oxidation. Acta Phys. Chim. Sin., 2011, 27(12): 2857-2862.

URL:     OR

(1) Prater, K. B. J. Power Sources 1996, 61, 105.  
(2) Doo, H. J.; Chang, H. L.; Chang, S. K.; Dong, R. S. J. Power Sources 1998, 71, 169.  
(3) Xu, Q. J.; Zhou, X. J.; Li, Q. X.; Li, J. G. Acta Phys. -Chim. Sin. 2010, 26, 2135. [徐群杰, 周小金, 李巧霞, 李金光. 物理化学学报, 2010, 26, 2135.]
(4) Beden, B.; Lamy, C.; Bewick, A.; Kunimatsu, K. J. Electroanal. Chem. 1981, 121, 343.
(5) Hamnett, A. Catal. Today 1997, 38, 445.  
(6) Li, L. L.;Wei, Z. D.; Yan, C.; Luo, Y. H.; Yin, G. Z.; Sun, C. X. Acta Phys. -Chim. Sin. 2007, 23 (5), 723. [李兰兰, 魏子栋, 严灿, 罗义辉, 尹光志, 孙才新. 物理化学学报, 2007, 23 (5), 723.]
(7) An, X. S.; Chen, D. J.; Zhou, Z. Y.;Wang, Q.; Fan, Y. J.; Sun, S. G. Acta Phys. -Chim. Sin. 2010, 26, 1207. [安筱莎, 陈德俊, 周志有, 汪强, 樊友军, 孙世刚. 物理化学学报. 2010, 26, 1207.]
(8) Wei, Z. D.; Guo, H. T.; Tang, Z. Y. J. Power Sources 1996, 58, 239.  
(9) Chrzanowski,W.; Kim, H.;Wieckowski, A. Catal. Lett. 1998, 50, 69.  
(10) Wei, Z. D.; Li, L. L.; Luo, Y. H.; Yan, C.; Sun, C. X.; Yin, G. Z.; Shen, P. K. J. Phys. Chem. B 2006, 110, 26055.  
(11) Chrzanowski,W.;Wieckowski, A. Langmuir 1997, 13, 5974.  
(12) Zhou,W. J.; Zhou, Z. H.; Li,W. Z.; Sun, G. Q.; Xin, Q. Chemistry 2003, 66 (4), 228. [周卫江, 周振华, 李文震, 孙公权, 辛勤. 化学通报. 2003, 66 (4), 228.]  
(13) Goodenough, J. B.; Manoharan, R.; Shukla, A. K.; Ramesh, K. V. Chem. Mater. 1989, 1, 391.  
(14) Wei, Z. D.; Miki, A.; Ohmori, T.; Osawa, M. Acta Phys. -Chim. Sin. 2002, 18 (12), 1120. [魏子栋, 三木敦史, 大森唯义, 大泽雅致. 物理化学学报, 2002, 18 (12), 1120.]
(15) She, C. X.; Li, X. Q.; Ren, B.; Lin, H. S.; Tian, Z. Q. Chinese Journal of Light Scattering 2002, 3, 223. [佘春兴, 李筏琴, 任斌, 林华水, 田中群. 光散射学报, 1999, 3, 223]
(16) Frelink, T.; Visschefz,W.; Van Veen, J. A. R. Electrochim. Acta 1994, 39, 1871.  
(17) Antolini, E.; Gonzalez, E. R. E. Catal. Today 2011, 160, 28.  
(18) OliveiraNeto, A.; Ricardo, R. D.; Marcelo,M. T., Linardia, M.; Spinacé, E. V. J. Power Sources 2007, 166, 87.  
(19) Strasser, P. J. Comb. Chem. 2008, 10, 216.  
(20) Estevam, V. Spinacé; Marcelo, L.; Almir, O. N. Electrochem. Commun. 2005, 7, 365.  
(21) Travitsky, N.; Burstein, L.; Rosenberg, Y.; Peled, E. J. Power Sources 2009, 194, 161.  
(22) Beyhan, S.; Kadirgan, F.; Léger, J. M. In-situ Iinfrared Spectroscopy Study of Ethanol Oxidation on Pt and PtSn-Based Trimetallic Anode Electrocatalysts for Direct Ethanol Fuel Cell. In Electrode Processes Relevant to Fuel Cell Technology. 217th ECS Meeting, Vancouver, Canada, April 25-30, 2010; Birss, V.; Kulesza, P.; Mustain,W.; Ota, K.;Wilkinson, D.; The Electrochemical Society 2010, B7, 603.
(23) Wei, Z. D.; Chen, S. G.; Liu, Y.; Sun, C. X.; Shao, Z. G.; Shen, P. K. J. Phys. Chem. C 2007, 111, 15456.  
(24) Liao, M. J.;Wei, Z. D.; Chen, S. G.; Li, L.; Ji, M. B.;Wang, Y. Q. Int. J. Hydrog. Energy 2010, 35, 8071.  
(25) Crabb, E. M.; Marshall, R.; Thompsett, D. J. Electrochem. Soc. 2000, 147, 4440.  
(26) Xia, X. H.; Iwasita, T.; Ge, F.; Vielstich,W. Electrochim . Acta 1996, 41, 711.  
(27) Iwasita, T.; Braz. J . Chem . Soc. 2002, 13, 401.
(28) Wang, J.; Masel, R. I. Surf . Sci. 1991, 235, 199.
(29) Zhou, Z. Y.; Tian, N.; Zeng D. M.; Sun, S. G. The Proceeding of 12th National Conference of Electrochemistry, Shanghai, China, 2003, A040. [周志有, 田娜, 曾冬梅, 孙世刚, 第12 次全国电化学会议论文集, 上海, 2003, A040.]
(30) Chen,W.; Kim, J.; Sue, S.; Chen, S. Langmuir 2007, 23, 11303.  
(31) Chen, J.;Wang, M.; Liu, B.; Fan, Z.; Cui, K.; Kuang, Y. J. Phys. Chem. B 2006, 110, 1775.  
(32) Hsieh, C. T.; Lin, J. Y. J. Power Sources 2009, 188, 347.  
[1] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[2] YAN Hui-Jun, LI Biao, JIANG Ning, XIA Ding-Guo. First-Principles Study:the Structural Stability and Sulfur Anion Redox of Li1-xNiO2-ySy[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1781-1788.
[3] YU Jing-Hua, LI Wen-Wen, ZHU Hong. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1838-1845.
[4] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[5] LIU Jing-Wei, YANG Na-Ting, ZHU Yan. Pd/Co3O4 Nanoparticles Inlaid in Alkaline Al2O3 Nanosheets as an Efficient Catalyst for Catalytic Oxidation of Methane[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1453-1461.
[6] GU Jin-Yu, QI Peng-Wei, PENG Yang. Progress on the Development of Inorganic Lead-Free Perovskite Solar Cells[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1379-1389.
[7] ZHANG Yan-Tao, LIU Zhen-Jie, WANG Jia-Wei, WANG Liang, PENG Zhang-Quan. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(3): 486-499.
[8] SHAI Xu-Xia, LI Dan, LIU Shuang-Shuang, LI Hao, WANG Ming-Kui. Advances and Developments in Perovskite Materials for Solar Cell Applications[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2159-2170.
[9] XIAO Juan, ZHANG Hao-Li. Recent Progress in Organic-Inorganic Hybrid Perovskite Materials for Luminescence Applications[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1894-1912.
[10] SUN Xiao-Xiang, CHEN Yu, ZHAO Jian-Xi. Foams Stabilized by Fumed Silica Particles with a Quaternary Ammonium Gemini Surfactant[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2045-2051.
[11] LI Hong-Mei, LAN Li, CHEN Shan-Hu, LIU Da-Yu, WANG Wei, GONG Mao-Chu, CHEN Yao-Qiang. Preparation of CeO2-ZrO2-Al2O3 with a Composite Precipitant and Its Supported Pd-Only Three-Way Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1734-1746.
[12] DANG Cheng-Xiong, YANG Hao-Bo, YU Hao, WANG Hong-Juan, PENG Feng. CexNi0.5La0.5-xO Catalysts for Hydrogen Production by Oxidative Steam Reforming of Glycerol: Influence of the Ce-to-La Ratio[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1527-1533.
[13] LIU Jian-Hong, Lü Cun-Qin, JIN Chun, WANG Gui-Chang. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Phys. Chim. Sin., 2016, 32(4): 950-960.
[14] LIANG Mei-Qing, YIN Hong-Yao, FENG Yu-Jun. Smart Aqueous Foams: State of the Art[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2652-2662.
[15] WANG Ya-Li, LI Qi, WENG Wei-Zheng, XIAWen-Sheng, WAN Hui-Lin. Catalytic Behaviors and Stability of Y2O3-Modified Ni/SiO2 for Partial Oxidation of Methane into Synthesis Gas[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2776-2784.