Please wait a minute...
Acta Phys. Chim. Sin.  2011, Vol. 27 Issue (12): 2779-2785    DOI: 10.3866/PKU.WHXB20112779
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Car-Parrinello Molecular Dynamics Simulations of Microstructure Properties of Liquid Water, Methanol and Ethanol
ZENG Yong-Ping, ZHU Xiao-Min, YANG Zheng-Hua
College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu Province, P. R. China
Download:   PDF(2334KB) Export: BibTeX | EndNote (RIS)      

Abstract  Car-Parrinello molecular dynamics (CPMD) calculations were performed on the solvent structure properties of water, methanol, and ethanol. The results show that the first O…O peaks of the radial distribution functions (RDFs) in the three systems are 0.278 nm for water, 0.276 nm for methanol, and 0.275 nm for ethanol. The first O…H peaks of the radial distribution functions (RDFs) in the three systems are at 0.178 nm for water, 0.176 nm for methanol, and 0.177 nm for ethanol. This indicates that the hydrophobic groupings (hydrogen, methyl, and ethyl) have little influence on the first peak position. However, the intensity of the RDFs increases from water to methanol and ethanol. The spatial distribution functions show that the oxygen and hydrogen atoms of other solvent molecules have characteristic orientations on the reference molecules in these systems. The results are in agreement with the first sharp peak of the radial distribution functions. We analyzed the hydrogen bonds using a statistical method. The results show that the average hydrogen bond numbers are 3.62 for water, 1.99 for methanol, and 1.87 for ethanol. Therefore, different hydrogen-bonded network structures are formed for liquid water, methanol, and ethanol via hydrogen bonds.

Key wordsWater      Methanol      Ethanol      CPMD      Microstructure     
Received: 02 August 2011      Published: 06 September 2011
MSC2000:  O645  
  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (20806064).

Corresponding Authors: ZENG Yong-Ping     E-mail: ypzeng@yzu.edu.cn
Cite this article:

ZENG Yong-Ping, ZHU Xiao-Min, YANG Zheng-Hua. Car-Parrinello Molecular Dynamics Simulations of Microstructure Properties of Liquid Water, Methanol and Ethanol. Acta Phys. Chim. Sin., 2011, 27(12): 2779-2785.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20112779     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I12/2779

(1) Susan, B. R.; Lawrence, R. P.; Gerhard, H.; Joel, D. K.; Richard, L. M.; Antonio, R. J. Am. Chem. Soc. 2000, 122, 966.  
(2) Ayala, R.; Martinez, J. M.; Pappalardo, R. R.; Muňoz-Paez, A.; Marcos, E. S. J. Phys. Chem. B 2008, 112, 5416.  
(3) Rudolph,W.W.; Fischer, D.; Irmer, G.; Pye, C. C. Dalton Trans. 2009, 33, 6513.
(4) Yu, X. C.; Lin, K.; Hu, N. Y.; Zhou, S. G.; Liu, S. L. Acta Phys. -Chim. Sin. 2010, 26, 2473. [余小春, 林珂, 胡乃银, 周晓国, 刘世林. 物理化学学报, 2010, 26, 2473.]
(5) Liu, Y.;Wang, F. F.; Yu, C. Y.; Liu, C.; Gong, L. D.; Yang, Z. Z. Acta Phys. -Chim. Sin. 2011, 27, 379. [刘燕, 王芳芳, 于春阳, 刘翠, 宫利东, 杨忠志. 物理化学学报, 2011, 27, 379.]
(6) Savage, P. E. Chem. Rev. 1999, 99, 603.  
(7) Hass, K. C.; Schneider,W. F.; Curioni, A.; Andreoni,W. Science 1998, 282, 265.  
(8) Staehelin, J.; Hoigne, J. Environ. Sci. Technol. 1985, 79:1206.
(9) Danten, Y.; Tassaing. T.; Besnard, M. J. Phys. Chem. A 2006, 110, 8986.  
(10) Saiz, L.; Guardia, E.; Padro, J. A. J. Chem. Phys. 2000, 113, 2814.2  
(11) van Erp, T. S.; Meijer, E. J. J. Chem. Phys. 2003, 118, 8831.  
(12) Chen, R.; Zhao, T. S. Electrochem. Commun. 2007, 9, 718.  
(13) Neburchilov, V.; Martin, J.;Wang, H.; Zhang, J. J. Power Sources 2007, 169, 221.  
(14) Zhou,W. J.; Zhou, B.; Li,W. Z.; Zhou, Z. H.; Song, S. Q.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; Goula, M.; Tsiakaras, P. J. Power Sources 2004, 126, 16.  
(15) Li,W.; Liang, C.; Zhou,W.; Qiu, J.; Zhou, Z.; Sun, G.; Xin, Q. J. Phys. Chem. B 2003, 107, 6292.  
(16) Zhou,W.; Zhou, Z.; Song, S.; Li,W.; Sun, G.; Tsiakaras, P.; Xin, Q. Appl. Cata. B: Environ. 2003, 46, 273.  
(17) Song, S.; Tsiakaras, P. Appl. Cata. B: Environ. 2006, 63, 187.  
(18) Megyes, T.; Radnai, T.; Grósz, T.; Pálinkás, G. J. Mol. Liq. 2002, 101, 3.  
(19) Herdman, G. J.; Salmon, P. S. J. Am. Chem. Soc. 1991, 113, 2930.  
(20) Guillot, B.; Marteau, P.; Obriot, J. J. Chem. Phys. 1990, 93, 6148.  
(21) Pye, C. C.; Rudolph,W.W. J. Phys. Chem. 1998, 102, 9933.
(22) Omta, A.W.; Kropman, M. F.;Woutersen, S.; Bakker, H. J. Science 2003, 301, 347.  
(23) Sprik, M.; Hutter, J.; Parrinello, M. J. Chem. Phys. 1996, 105, 1142.  
(24) Wernet, P.; Nordlund, D.; Bergmann, U.; Cavalleri, M.; Odelius, M.; Ogasawara, H.; Näslund, L. Å.; Hirsch, T. K.; Ojamäe, L.; Glatzel, P.; Pettersson, L. G. M.; Nilsson, A. Science 2004, 204, 995.
(25) Haughney, M.; Ferrario, M.; McDonald, R. J. Phys. Chem. 1987, 91, 4934.  
(26) Saiz, L.; Padró, J. A.; Guàrdia, E. J. Phys. Chem. 1997, 101, 78.
(27) Pagliai, M.; Cardini, G.; Righini, R.; Schettino, V. J. Chem. Phys. 2003, 119, 6655.  
(28) Handgraaf, J.W.; Erp, T. S.; Meijer, E. J. Chem. Phys. Lett. 2003, 367, 617.  
(29) Kim, K.; Jordan, K. D. J. Phys. Chem. 1994, 98, 10089.  
(30) Provencal, R. A.; Casaes, R. N.; Roth, K.; Paul, J. B.; Chapo, C. N.; Saykally, R. J. J. Phys. Chem. A 2000, 104, 1423.  
(31) Xu, X.; Goddard,W. A., III. J. Phys. Chem. A 2004, 108, 2305.  
(32) Benedict,W. S.; Gailan, N.; Plyler, E. K. J. Chem. Phys. 1956, 24, 1139.  
(33) Boyd, S. L.; Boyd, R. J. J. Chem. Theory Comput. 2007, 3, 54.  
(34) Sasada, Y.; Takano, M.; Satoh, T. J. Mol. Spectrosc. 1971, 38, 33.  
(35) Culot, J. P. Symposium on Gas Phase Molecular Structure, 4th ed.; Austin: Texas, 1972; paper T8.  
(36) Han, G. Z.; Zhang, C.; Gao, J. G.; Qian, P. Acta Phys. -Chim. Sin. 2011, 27, 1361. [韩光占, 张超, 高吉刚, 钱萍. 物理化学学报2011, 27, 1361.]
(37) Coussan, S.; Bouteiller, Y.; Perchard, J. P.; Zheng,W. Q. J. Phys. Chem. A 1998, 102, 5789.  
(38) Narten, A. H.; Levy, H. A. J. Chem. Phys. 1971, 55, 2263.  
(39) Narten, A. H.; Nabenschuss, A. J. Chem. Phys. 1984, 80, 3387.  
(40) Svishchev, I. M.; Kusalik, P. G. J. Chem. Phys. 1994, 100, 5165.  
(41) Kuo,W.; Mundy, J.; McGrath, J.; Siepmann, J. I.; Van de Vondele, J.; Sprik, M.; Hutter, J.; Chen, B.; Klein, M. L.; Mohamed, F.; Krack, M.; Parrinello, M. J. Phys. Chem. B 2004, 108, 12990.  
(42) Padró, J. A.; Saiz, L.; Guàrdia, E. J. Mol. Struct. 1997, 416, 243.  
(43) Jorgensen,W. L. J. Phys. Chem. 1986, 90, 1276.  
(44) Boese, A. D.; Doltsinis, N. L.; Handy, N. C.; Sprik, M. J. Chem. Phys. 2000, 112, 1670.  
(45) Soper, A. K.; Bruni, F.; Ricci, M. A. J. Chem. Phys. 1997, 106, 247.  
[1] YI Yanhui, WANG Xunxun, WANG Li, YAN Jinhui, ZHANG Jialiang, GUO Hongchen. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. Chim. Sin., 2018, 34(3): 247-255.
[2] CUI Peng, LIU Hai, YU Xue-Min, XIA Qing, LI Qing-Song. Measurement and Correlation of Liquid-Liquid Equilibrium Data for the Water+Cyclohexanone+Methyl Isobutyl Ketone Ternary System[J]. Acta Phys. Chim. Sin., 2018, 34(1): 65-72.
[3] HUANG Xiang-Feng, LIU Wan-Qi, XIONG Yong-Jiao, PENG Kai-Ming, LIU Jia, LU Li-Jun. Application and Effect of Functional Magnetic Nanoparticles in Emulsion Preparation and Demulsification[J]. Acta Phys. Chim. Sin., 2018, 34(1): 49-64.
[4] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[5] NING Hong-Yan, YANG Qi-Lei, YANG Xiao, LI Ying-Xia, SONG Zhao-Yu, LU Yi-Ren, ZHANG Li-Hong, LIU Yuan. Carbon Fiber-supported Rh-Mn in Close Contact with Each Other and Its Catalytic Performance for Ethanol Synthesis from Syngas[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1865-1874.
[6] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[7] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[8] LING Chong-Yi, WANG Jin-Lan. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Phys. Chim. Sin., 2017, 33(5): 869-885.
[9] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(4): 769-779.
[10] HUANG Ming-Hui, JIN Bi-Yao, ZHAO Lian-Hua, SUN Shi-Gang. Preparation and Characterization of Pt-Ni-SnO2/C for Ethanol Oxidation Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(3): 563-572.
[11] SUN Yi-Ran, YU Fei, MA Jie. Research Progress of Nanoconfined Water[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2173-2183.
[12] YE Bin, ZHANG Jian, GAO Cai, TANG Jing-Chun. Experimental and Theoretical Analysis of 1H NMR on Double-Carbon Alcohol Aqueous Solutions[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1978-1988.
[13] SUN Meng, LI Jing-Hong. Recent Progress on Palladium-Based Oxygen Reduction Reaction Electrodes for Water Treatment[J]. Acta Phys. Chim. Sin., 2017, 33(1): 198-210.
[14] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[15] LIU Shan-Shan, JI Shan, CHEN Qi-Bin, PENG Chang-Jun, LIU Hong-Lai. Surface Patterning and Force-Induced Reversible Structural Transformation of a PVP-Chol Supramolecular Polymer Brush[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2318-2326.