Please wait a minute...
Acta Phys. -Chim. Sin.  2011, Vol. 27 Issue (11): 2583-2586    DOI: 10.3866/PKU.WHXB20111123
ELECTROCHEMISTRY AND NEW ENERGY     
Improved Graphene Film by Reducing Restacking for Lithium Ion Battery Applications
YANG Xiao-Wei, HE Yu-Shi, LIAO Xiao-Zhen, MA Zi-Feng
Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Download:   PDF(531KB) Export: BibTeX | EndNote (RIS)      

Abstract  We prepared improved graphene films by freeze drying solvated graphene films, which greatly reduced the serious restacking of graphene layers when they were face-to-face stacked. The results show that the improved graphene film had more corrugations and a larger interplanar distance than the usual graphene films prepared by vacuum filtration leading to improved electrochemical performance. The discharge and charge capacities of the battery were 1189.3 and 645.2 mAh·g-1, respectively, for the first cycle at 50 mA·g-1 and the charge capacity remained above 305 mAh·g-1 after 400 cycles. These values are higher than those of the graphene film prepared by vacuum filtration. Moreover, the mass and cost of the electrode were reduced significantly compared with the commercial graphite-based anode, which is made by coating a mixture of an active material, a polymeric binder, and an electric current collector.

Key wordsGraphene film      Freeze drying      Restacking      Electrode      Lithium ion battery     
Received: 01 July 2011      Published: 13 September 2011
MSC2000:  O646  
Fund:  

The project was supported by the National Key Basic Research Program of China (2007CB209705), National Natural Science Foundation of China (21006063, 21073120) and Science and Technology Commission of Shanghai Municipality, China (10DZ1202702).

Corresponding Authors: MA Zi-Feng     E-mail: zfma@sjtu.edu.cn
Cite this article:

YANG Xiao-Wei, HE Yu-Shi, LIAO Xiao-Zhen, MA Zi-Feng. Improved Graphene Film by Reducing Restacking for Lithium Ion Battery Applications. Acta Phys. -Chim. Sin., 2011, 27(11): 2583-2586.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB20111123     OR     http://www.whxb.pku.edu.cn/Y2011/V27/I11/2583

(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  
(2) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.  
(3) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26, 2073.]
(4) Wang, X.; Zhi, L.; Mullen, K. Nano Letters 2007, 8, 323.
(5) Wen, Z. L.; Yang, S. D.; Song, Q. J.; Hao, L.; Zhang, X. G. Acta Phys. -Chim. Sin. 2010, 26, 1570. [温祝亮, 杨苏东, 宋启军, 郝亮, 张校刚. 物理化学学报, 2010, 26, 1570.]
(6) Li, Y. X.;Wei, Z. D.; Zhao, Q. L.; Ding,W.; Zhang, Q.; Chen, S. G. Acta Phys. -Chim. Sin. 2011, 27, 858. [李云霞, 魏子栋, 赵巧玲, 丁炜, 张骞, 陈四国. 物理化学学报, 2011, 27, 858.]
(7) Wu, X. Q.; Zong, R. L.; Mu, H. J.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2010, 26, 3002. [吴小琴, 宗瑞隆, 牟豪杰, 朱永法. 物理化学学报, 2010, 26, 3002.]
(8) Dimitrakakis, G. K.; Tylianakis, E.; Froudakis, G. E. Nano Letters 2008, 8, 3166.  
(9) Stoller, M. D.; Park, S. J.; Zhu, Y.W.; An, J. H.; Ruoff, R. S. Nano Letters 2008, 8, 3498.  
(10) Chen, S.; Zhu, J.W.;Wu, X. D.; Han, Q. F.;Wang, X. ACS Nano 2010, 4, 2822.  
(11) Wang, H.; Hao, Q.; Yang, X.; Lu, L.;Wang, X. Nanoscale 2010, 2, 2164.  
(12) He, Y. S.; Bai, D.W.; Yang, X.W.; Chen, J.; Liao, X. Z.; Ma, Z. F. Electrochem. Commun. 2010, 12, 570.  
(13) Wang, C.; Li, D.; Too, C. O.; G.,W. G. Chem. Mater. 2009, 21, 2604.  
(14) Yang, S.; Feng, X.;Wang, L.; Tang, K.; Maier, J.; Müllen, K. Angew. Chem. Int. Edit. 2010, 49, 4795.
(15) Wang, H.; Cui, L. F.; Yang, Y.; Sanchez Casalongue, H.; Robinson, J. T.; Liang, Y.; Cui, Y.; Dai, H. J. Am. Chem. Soc. 2010, 132, 13978.  
(16) Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma, I. Nano Letters 2008, 8, 2277.  
(17) Chen, H.; Muller, M. B.; Gilmore, K. J.;Wallace, G. G.; Li, D. Adv. Mater. 2008, 20, 3557.  
(18) Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.;Wallace, G. G. Nat. Nanotechnol. 2008, 3, 101.  
(19) Yang, X.W.; Zhu, J.W.; Qiu, L.; Li, D. Adv. Mater. 2011, 23, 2383.
(20) Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Nature 2007, 448, 457.  
(21) Li, D.; Kaner, R. B. Science 2008, 320, 1170.  
[1] GU Yuxing, YANG Juan, WANG Dihua. Electrochemical Features of Carbon Prepared by Molten Salt Electro-reduction of CO2[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 208-214.
[2] Yanhuan CHEN,Jiaofu LI,Huibiao LIU. Preparation of Graphdiyne-Organic Conjugated Molecular Composite Materials for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1074-1079.
[3] Jianyong OUYANG. Recent Advances of Intrinsically Conductive Polymers[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1211-1220.
[4] Li-Gang XU,Wei QIU,Run-Feng CHEN,Hong-Mei ZHANG,Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 36-48.
[5] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.
[6] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[7] Feng-Ming ZHAO,Gang WEN,Li-Yao KONG,You-Qun CHU,Chun-An MA. Structure Characteristic of Titanium Nitride Nanowires and Its Electrode Processes for Ⅴ(Ⅱ)/Ⅴ(Ⅲ) Redox Couple[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1181-1188.
[8] Rui XIA,Shi-Mao WANG,Wei-Wei DONG,Xiao-Dong FANG. Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 670-690.
[9] Li-Ping ZHAO,Wei-Shuai MENG,Hong-Yu WANG,Li QI. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 787-794.
[10] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 305-313.
[11] Wan-Long LI,Yue-Jiao LI,Mei-Ling CAO,Wei QU,Wen-Jie QU,Shi CHEN,Ren-Jie CHEN,Feng WU. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2261-2267.
[12] Ya-Peng HE,Rong-Ling CHEN,Chao-Nan WANG,Hong-Dong LI,Wei-Min HUANG,Hai-Bo LIN. Electrochemical Oxidation of Substituted Phenols on a Boron Doped Diamond Electrode[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2253-2260.
[13] Ya-Dong LI,Yu-Feng DENG,Zhi-Yi PAN,Yin-Ping WEI,Shi-Xi ZHAO,Lin GAN. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2293-2300.
[14] Xue-Qin LI,Lin CHANG,Shen-Long ZHAO,Chang-Long HAO,Chen-Guang LU,Yi-Hua ZHU,Zhi-Yong TANG. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 130-148.
[15] Meng SUN,Jing-Hong LI. Recent Progress on Palladium-Based Oxygen Reduction Reaction Electrodes for Water Treatment[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 198-210.