Please wait a minute...
Acta Phys. Chim. Sin.  2011, Vol. 27 Issue (12): 2831-2835    DOI: 10.3866/PKU.WHXB20112831
ELECTROCHEMISTRY AND NEW ENERGY     
Photoelectrochemical Properties of Graphene Oxide Thin Film Electrodes
ZHANG Xiao-Yan, SUN Ming-Xuan, SUN Yu-Jun, LI Jing, SONG Peng, SUN Tong, CUI Xiao-Li
Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
Download:   PDF(766KB) Export: BibTeX | EndNote (RIS)      

Abstract  A series of graphene oxide (GO) thin films were prepared by a dip-coating method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-Vis) light absorption, and photoelectrochemical measurements. A cathodic photocurrent was observed for the GO electrodes and the photocurrent density was influenced by the thickness of the films. The GO film electrode with an average thickness of 27 nm gave a photocurrent density of 0.25 μA·cm-2. The photoresponse of the GO electrodes was found to be influenced by UV irradiation and the cathodic photocurrent decreased gradually with UV irradiation time. This work provides a simple method to change the photoelectrochemical property of GO films by controlling the film thickness or UV irradiation time.

Key wordsGraphene oxide      Photoelectrochemical property      Cathodic photocurrent      Film thickness      UV irradiation     
Received: 09 June 2011      Published: 15 September 2011
MSC2000:  O646  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2011CB933302, 2010CB933703), Shanghai Science and Technology Commission, China (1052nm01800), and Key Disciplines Innovative Personnel Training Plan of Fudan University, China.

Corresponding Authors: CUI Xiao-Li     E-mail: xiaolicui@fudan.edu.cn
Cite this article:

ZHANG Xiao-Yan, SUN Ming-Xuan, SUN Yu-Jun, LI Jing, SONG Peng, SUN Tong, CUI Xiao-Li. Photoelectrochemical Properties of Graphene Oxide Thin Film Electrodes. Acta Phys. Chim. Sin., 2011, 27(12): 2831-2835.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20112831     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I12/2831

(1) Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Science 2007, 315, 1379.  
(2) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.  
(3) Zhang, Y. B.; Tan, Y.W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201.  
(4) Gusynin, V. P.; Sharapov, S. G. Phys. Rev. Lett. 2005, 95, 146801/1-4.
(5) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Crigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  
(6) Fan, Y.; Huang, K. J.; Niu, D. J.; Yang, C. P.; Jing, Q. S. Electrochim. Acta 2011, 56, 4685.  
(7) Du, Q. L.; Zheng, M. B.; Zhang, L. F.;Wang, Y.W.; Chen, J. H.; Xue, L. P.; Dai,W. J.; Ji, G. B.; Cao, J. M. Electrochim. Acta 2010, 55, 3897.  
(8) Du, X.; Guo, P.; Song, H. H.; Chen, X. H. Electrochim. Acta 2010, 55, 4812.  
(9) Zhao, Y. C.; Zhan, L.; Tian, J. N.; Nie, S. L.; Ning, Z. Electrochim. Acta 2011, 56, 1967.  
(10) Li, C.; Shi, G. Q. Electrochim. Acta 2011, 10.1016/j. DOI: electacta.2010.12.081.
(11) Zhang, Y.; Sun, X. M.; Zhu, L. Z.; Shen, H. B.; Jia, N. Q. Electrochim. Acta 2011, 56, 1239.  
(12) Eda, G.; Mattevi, C.; Yamaguchi, H.; Kim, H.; Chhowalla, M. J. Phys. Chem. C 2009, 113, 15768.  
(13) Park, S.; Ruoff, R. S. Nat. Nanotechnol. 2009, 4, 217
(14) Robinson, J. T.; Perkins, F. K.; Snow, E. S.;Wei, Z.; Sheehan, P. E. Nano Lett. 2008, 8, 3137.  
(15) Eda, G.; Fanchini, G.; Chhowalla, M. Nat. Nanotechnol. 2008, 3, 270
(16) Yeh, T. F.; Syu, J. M.; Cheng, C.; Chang, T. H.; Teng, H. Adv. Funct. Mater. 2010, 20, 2255.  
(17) Chen, C.; Cai,W. M.; Long, M. C.; Zhou, B. X.;Wu, Y. H.;Wu, D. Y.; Feng, Y. J. ACS Nano 2010, 4, 6425.  
(18) Lahaye, R. J.W. E.; Jeong, H. K.; Park, C. Y.; Lee, Y. H. Phys. Rev. B 2009, 79, 125435.  
(19) Wu, X. S.; Sprinkle, M.; Li, X. B.; Ming, F.; Berger, C.; de Heer,W. A. Phys. Rev. Lett. 2008, 101, 026801.  
(20) Gilje, S.; Han, S.;Wang, M.;Wang, K. L.; Kaner, R. B. Nano Lett. 2007, 7, 3394.  
(21) Lu, Z. S.; Guo, C. X.; Yang, H. B.; Qiao, Y.; Guo, J.; Li, C. M. J. Colloid Interface Sci. 2011, 353, 588.  
(22) Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R. J. Phys. Chem. Lett. 2010, 1, 2607.  
(23) Chang, H. X.; Lv, X. J.; Zhang, H.; Li, J. H. Electrochem. Commun. 2010, 12, 483.  
(24) Zhang, X. Q.; Feng, Y. Y.; Tang, S. D.; Feng,W. Carbon 2010, 48, 211.  
(25) Manga, K. K.; Zhou, Y.; Yan, Y. L.; Loh, K. P. Adv. Funct. Mater. 2009, 19, 3638.  
(26) Zhang, X. Y.; Li, H. P.; Cui, X. L. Chin. J. Inorg. Chem. 2009, 25, 1903.
(27) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.  
(28) Bourlinos, A. B.; Gournis, D.; Petridis, D.; Szabó, T.; Szeri, A.; Dékány, I. Langmuir 2003, 19, 6050.  
(29) Ding, Y. H.; Zhang, P.; Zhuo, Q.; Ren, H. M.; Yang, Z. M.; Jiang, Y. Nanotechnology 2011, 22, 215601.  
(30) Jiao, L.; Chen, I.; Collins, R.W.;Wronski, C. R.; Hata, N. Appl. Phys. Lett. 1998, 72, 1057.  
(31) Walter, M. G.;Warren, E. L.; McKone, J. R.; Boettcher, S.W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446.  
(32) Hu, C. C.; Nian, J. N.; Teng, H. Solar Energy Materials & Solar Cells 2008, 92, 1071.  
[1] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[2] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[3] ZENG Xiang-Dong, ZHAO Xiao-Yu, WEI Hui-Ge, WANG Yan-Fei, TANG Na, SHA Zuo-Liang. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2035-2041.
[4] ZHAO Sheng-Jun, ZHANG Wei, DENG Hui-Ning, LIU Wei. Layer-by-Layer Assembly of Graphene Oxide and Polyelectrolyte Composite Membranes for Monovalent Cation Separation[J]. Acta Phys. Chim. Sin., 2016, 32(3): 723-727.
[5] JIAO Jin-Zhen, LI Shi-Hui, HUANG Bi-Chun. Preparation of Manganese Oxides Supported on Graphene Catalysts and Their Activity in Low-Temperature NH3-SCR[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1383-1390.
[6] LIANG Yi, LU Yun, YAO Wei-Shang, ZHANG Xue-Tong. Polyimide Aerogels Crosslinked with Chemically Modified Graphene Oxide[J]. Acta Phys. Chim. Sin., 2015, 31(6): 1179-1185.
[7] XU Jing, YANG De-Zhi, LIAO Xiao-Zhen, HE Yu-Shi, MA Zi-Feng. Electrochemical Performances of Reduced Graphene Oxide/Titanium Dioxide Composites for Sodium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(5): 913-919.
[8] LI Wen-You, HE Yun-Qiu, LI Yi-Ming. Photoelectric Properties of Graphene Oxide Film Prepared with the Electrochemical Method Using Varying Levels of Reduction[J]. Acta Phys. Chim. Sin., 2015, 31(3): 457-466.
[9] YANG Jun-Li, WU Cong-Ling, LI Yuan-Hao, LI Wan-Li, MIAO Yan-Qin, GUO Kun-Peng, LIU Hui-Hui, WANG Hua, WU Yong-An. Effect of Graphene Oxide Doped PEDOT:PSS as a Hole Injection Layer on the Luminescence Performance of Organic Light-Emitting Diodes[J]. Acta Phys. Chim. Sin., 2015, 31(2): 377-383.
[10] MA Hui-Ling, ZHANG Long, ZHANG You-Wei, LIU Di, SUN Chao, ZENG Xin-Miao, ZHAI Mao-Lin. γ-Ray Induced Reduction of Graphene Oxide in Aqueous Solution[J]. Acta Phys. Chim. Sin., 2015, 31(10): 2016-2022.
[11] YU Chang-Lin, WEI Long-Fu, LI Jia-De, HE Hong-Bo, FANG Wen, ZHOU Wan-Qin. Preparation and Characterization of GO/Ag3PO4 Composite Photocatalyst and Its Visible Light Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2015, 31(10): 1932-1938.
[12] WANG Jian-De, PENG Tong-Jiang, XIAN Hai-Yang, SUN Hong-Juan. Preparation and Supercapacitive Performance of Three-Dimensional Reduced Graphene Oxide/Polyaniline Composite[J]. Acta Phys. Chim. Sin., 2015, 31(1): 90-98.
[13] ZHANG Jian-Fang, WANG Yan, SHEN Tian-Kuo, SHU Xia, CUI Jie-Wu, CHEN Zhong, WU Yu-Cheng. Visible Light Photocatalytic Performance of Cu2O/TiO2 Nanotube Heterojunction Composites Prepared by Pulse Deposition[J]. Acta Phys. Chim. Sin., 2014, 30(8): 1535-1542.
[14] WANG Li, MA Jun-Hong. Synthesis and Electrocatalytic Properties of Pt Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2014, 30(7): 1267-1273.
[15] YANG Yu-Wen, FENG Gang, LU Zhang-Hui, HU Na, ZHANG Fei, CHEN Xiang-Shu. In situ Synthesis of Reduced Graphene Oxide Supported Co Nanoparticles as Efficient Catalysts for Hydrogen Generation from NH3BH3[J]. Acta Phys. Chim. Sin., 2014, 30(6): 1180-1186.