Please wait a minute...
Acta Phys. Chim. Sin.  2011, Vol. 27 Issue (12): 2872-2880    DOI: 10.3866/PKU.WHXB20112872
CATALYSIS AND SURFACE SCIENCE     
Highly Active Au/α-MnO2 Catalysts for the Low-Temperature Oxidation of Carbon Monoxide and Benzene
YE Qing, HUO Fei-Fei, YAN Li-Na, WANG Juan, CHENG Shui-Yuan, KANG Tian-Fang
College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, P. P. China
Download:   PDF(2664KB) Export: BibTeX | EndNote (RIS)      

Abstract  α-MnO2-supported gold catalysts (xAu/α-MnO2, x=0-7 (corresponding to the Au loading (mass fraction) of 0-7%) were prepared by a deposition- precipitation method using urea as a precipitation agent and characterized by different techniques such as X-ray diffraction (XRD), N2 adsorption-desorption measurements, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and H2 temperature-programmed reduction (TPR). The catalytic activities of the materials were evaluated for the oxidation of CO and benzene. The Au particle size was found to be related to the Au loading of the xAu/ α-MnO2 samples and increased with Au loading. XPS results showed that the mole ratios of O2-/(O22- or O-), Mn4+/Mn3+ and Au3+/Au0 increased upon the addition of Au. The loading of gold over α-MnO2 significantly modified the catalytic activities. The catalytic performance of xAu/α-MnO2 strongly depended on the Au loading, and 3Au/α-MnO2 gained the best activity at T90=80 °C and T90=20 °C for the catalytic oxidation of CO and benzene, respectively. The excellent performance of 3Au/α-MnO2 is associated with highly dispersed Au, good low-temperature reducibility, and a synergism at the interface between theAu and MnO2 nanodomains.

Key words&      alpha      -MnO2 supported gold catalyst      Low-temperature reducibility      Synergistic action      Carbon monoxide oxidation      Benzene combustion     
Received: 13 June 2011      Published: 29 September 2011
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (20777005), Natural Science Foundation of Beijing, China (8082008) and Beijing Municipal Foundation for Excellent Person of Ability, China (20071D0501500210).

Corresponding Authors: YE Qing     E-mail: yeqing@bjut.edu.cn
Cite this article:

YE Qing, HUO Fei-Fei, YAN Li-Na, WANG Juan, CHENG Shui-Yuan, KANG Tian-Fang. Highly Active Au/α-MnO2 Catalysts for the Low-Temperature Oxidation of Carbon Monoxide and Benzene. Acta Phys. Chim. Sin., 2011, 27(12): 2872-2880.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20112872     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I12/2872

(1) Gardner, S. D.; Hoflund, G. B.; Schryer, D. R.; Schryer, J.; Upchurch, B. T.; Kielin, E. J. Langmuir 1991, 7, 2135.  
(2) Li, Q.X.; Zhou, X.J.; Li, J.G.; Xu, C.J. Acta Phys. Chim. Sin. 2010, 26, 1488. [李巧霞, 周小金, 李金光, 徐群杰. 物理化学学报, 2010, 26, 1488.]
(3) Li, Y. J.; Zhang, J. J.; Li, N.; Lin, B. X. Acta Phys. -Chim. Sin. 1999, 15, 97. [刘英骏, 张继军, 李能, 林炳雄. 物理化学学报, 1999, 15, 97.]
(4) Spivey, J. J. Ind. Eng. Chem. Res. 1987, 26, 2165.  
(5) Zwinkels, M. F. M.; Jaras, S. G.; Menon, P. G.; Griffin, T. A. Cat. Rev. -Sci. Eng. 1993, 35, 319.  
(6) Taylor, S. H.; Heneghan, C. S.; Hutchings, G. J.; Hudson, I. D. Catal. Today 2000, 59, 249.  
(7) Kulshreshtha, S. K.; Gadgil, M. M. Appl. Catal. B 1997, 11, 291.  
(8) Luo, M. F.; Yuan, X. X.; Zheng, X. M. Appl. Catal. A 1998, 175, 121.  
(9) Ye, Q.; Zhao, J. S.; Huo, F. F.;Wang, J.; Cheng, S. Y.; Kang, T. F.; Dai, H. X. Catal. Today 2011, in press
(10) Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 16, 405
(11) Zhang, X.; Shi, H.; Xu, B. Q. Catal. Today 2007, 122, 330.  
(12) Zhao, J. J.; Zhang, P.; Song,W.; Huang, X. M.; Xu, Y. D. Acta Chim. Sin. 2007, 65 (18), 2007. [邵建军, 张平, 宋巍, 黄秀敏, 徐奕德, 申文杰. 化学学报, 2007, 65 (18), 2007.]
(13) Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. J. Catal. 1993, 144, 175.  
(14) Wu, Z. B.; Sheng, Z. Y.; Liu, Y.;Wang, H. Q.; Mo, J. S. J. Hazard. Mater. 2011, 185, 1053.  
(15) Kijima, N.; Yasuda, H.; Sato, T.; Yoshimura, Y. J. Solid State Chem. 2001, 59, 94
(16) Chen, Y.; Liu, C.; Li, F.; Cheng, H. M. J. Alloy. Compd. 2005, 397, 282.  
(17) Carno, J.; Ferrandon, M.; Bjornbom, E.; Jaras, S. Appl. Catal. A 1997, 155, 265.  
(18) Tsuji, Y.; Imamura, S. In New Aspects of Spillover Effect in Catalysis; Inui, T.; Fujimoto, K.; Uchijima, T.; Masai, M. Eds. Elsevier: Amsterdam, 1993; 77, p 405.
(19) Xu, R.;Wang, X.;Wang, D. S.; Zhou, K. B.; Li, Y. D. J. Catal. 2006, 237, 426.  
(20) Hamoudi, S.; Larachi, F.; Adnot, A.; Sayari, A. J. Catal. 1999, 185, 333.  
(21) Madier, Y.; Descorme, C.; Le Govic, A.M.; Duprez, D. J. Phys. Chem. B 1999, 103, 10999.  
(22) Muilenbergy, G. E. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Minnesota, 1979.
(23) Zhen, M.; Steve, H. O.; Sheng, D. J. Mol. Catal. A- Chem. 2007, 273, 186.  
(24) Hvolbaek, B.; Janssens, T.V.W.; Clausen, B.S.; Falsig, H.; Christensen, C.H.; Norskov, J.K. Nanotoday 2007, 2, 14.
(25) Ahn, H. G.; Lee, D. J. Res. Chem. Intermed. 2002, 28, 451.  
(26) Lambert, S.; Cellier, C.; Gaigneaux, E. M.; Pirard, J. P.; Heinrichs, B. Catal. Commun. 2007, 8, 1244.  
(27) Finch, R. M.; Hodge, N. A.; Hutchings, G. J.; Meagher, A.; Pankhurst, Q. A.; Siddiqui, M. R. H.;Wagner, F. E.; Whyman, R. Phys. Chem. Chem. Phys. 1999, 1, 485.
(28) Valden, M.; Lai, X.; Goodman, D.W. Science 1998, 281, 1647.  
(29) Henao, J. D.; Caputo, T.; Yang, J. H.; Kung, M.; Kung, H. H. J. Phys. Chem. B 2006, 110, 8689.  
(30) Taralunga, M.; Mijoin, J.; Magnoux, P. Applied Catalysis BEnvironmental 2005, 60, 163.  
(31) Grisel, R. J. H.; Nieuwenhuys, B. E. J. Catal. 2001, 199, 48.  
(32) Mars, P.; van Krevelen, D.W. Chem. Eng. Sci. Spec. Suppl. 1954, 3, 41.
(33) Liu, H.; Kozlov, A. I.; Kozlova, A. P.; Shida, T.; Iwasawa, Y. Phys. Chem. Chem. Phys. 1999, 1, 2851.
(34) Venezia, A. M.; Pantaleo, G.; Longo, A.; Carlo, G. D.; Casaletto, M. P.; Liotta, F. L.; Deganello, G. J. Phys. Chem. B 2005, 109, 2821.  
(35) Arena, F.; Trunfio, G.; Negro, J.; Fazio, B.; Spadaro, L. Chem. Mater. 2007, 19, 2269.  
[1] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[2] BAI Guang-Yue, LIU Jun-Ling, WANG Jiu-Xia, WANG Yu-Jie, LI Yan-Na, ZHAO Yang, YAO Mei-Huan. Enzymatic Superactivity and Conformational Change of α-CT Induced by Cationic Gemini Surfactant[J]. Acta Phys. Chim. Sin., 2017, 33(5): 976-983.
[3] LUO Qing-Qing, CAO Chao-Tun, CAO Chen-Zhong. Effects of Substituents on Reduction Potentials of Disubstituted N-Phenyl-α-phenylnitrones[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1691-1698.
[4] LIU Guo, LU Yuan-Yuan, ZHANG Jing, LI Zhi, FENG Zhao-Chi, LI Can. Phase Transformation and Photocatalytic Properties of Bi2O3 Prepared Using a Precipitation Method[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1247-1256.
[5] GAO Sha, LAN Wen-Bo, LIN Ying-Wu, LIAO Li-Fu, NIE Chang-Ming. Molecular Recognition of α,β-Unsaturated Carbonyl Compounds and Chiral Guests by Uranyl-Salophen Receptors[J]. Acta Phys. Chim. Sin., 2016, 32(3): 683-690.
[6] LI Yang, XIE Hua-Qing, LI Jing. Hydrothermal Synthesis of Al-Doped α-MnO2 Nanotubes and Their Electrochemical Performance for Supercapacitors[J]. Acta Phys. Chim. Sin., 2015, 31(4): 693-699.
[7] DONG Wen-Da, ZHU He-Jun, DING Yun-Jie, PEI Yan-Peng, DU Hong, WANG Tao. Effect of Trace Amounts of Li Doping on Performance of Co/AC Catalysts for Syntheses of Mixed Linear α-Alcohols[J]. Acta Phys. Chim. Sin., 2014, 30(9): 1745-1751.
[8] HU Yu-Xiang, JIANG Chun-Xiang, FANG Liang, ZHENG Fen-Gang, DONG Wen, SU Xiao-Dong, SHEN Ming-Rong. Effect of HF Treatment on the Photoelectrochemical Properties of a Hematite Thin Film Photoanode for Water Splitting[J]. Acta Phys. Chim. Sin., 2014, 30(6): 1099-1106.
[9] RUAN Lin-Wei, ZHU Yu-Jun, QIU Ling-Guang, LU Yu-Xiang. First-Principles Calculations of Optical and Elastic Properties of Carbon-Doped α-S8[J]. Acta Phys. Chim. Sin., 2014, 30(5): 845-854.
[10] GU Jia-Fang, CHEN Wen-Kai. Adsorption of the Uranyl Ion on the Hydroxylated α-Quartz (101) Surface[J]. Acta Phys. Chim. Sin., 2014, 30(10): 1810-1820.
[11] SHANGGUAN Peng-Peng, TONG Shao-Ping, LI Hai-Li, LENG Wen-Hua. Influence of the Potential on the Charge-Transfer Rate Constant of Photooxidation of Water over α-Fe2O3 and Ti-Doped α-Fe2O3[J]. Acta Phys. Chim. Sin., 2013, 29(09): 1954-1960.
[12] ZHANG Bing-Bing, ZHAO Cong, WANG Xue-Song, HE Lei, DU Wei-Hong. Effects of 4-Hydroxyproline Stereochemistry on α-Conotoxin Solution Conformation[J]. Acta Phys. Chim. Sin., 2013, 29(05): 1080-1087.
[13] LIU Rui Teng Bo-Tao, QUAN Jie-Li, LANG Jia-Jian, Luo Meng-Fei. A Density Functional Theory Study of HF Adsorption on the α-AlF3(0001) Surface[J]. Acta Phys. Chim. Sin., 2013, 29(02): 271-278.
[14] CHEN Fu-Xiao, FAN Wei-Qiang, ZHOU Teng-Yun, HUANG Wei-Hong. Core-Shell Nanospheres (HP-Fe2O3@TiO2) with Hierarchical Porous Structures and Photocatalytic Properties[J]. Acta Phys. Chim. Sin., 2013, 29(01): 167-175.
[15] SUN He-Yun, FAN Jia-Ni, HUANG Pei-Pei, SUN Zhong-Xi. Acid-Base Properties and Adsorption Behaviors of Heavy Metal Ions at the Surface of α-Fe2O3/SiO2Nano-Mixed System[J]. Acta Phys. Chim. Sin., 2012, 28(09): 2183-2190.