Please wait a minute...
Acta Phys. Chim. Sin.  2011, Vol. 27 Issue (12): 2939-2945    DOI: 10.3866/PKU.WHXB20112939
Facile Synthesis of Assembly HAP Nanoribbon Spheres and the Synergized Action of Its Photocatalytic Properties
YANG Xiao-Hong2, LIU Chang1, LIU Jin-Ku1, ZHU Zi-Chun2
1. Department of Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China;
2. Department of Chemistry, Chizhou University, Chizhou 247000, Anhui Province, P. R. China
Download:   PDF(1049KB) Export: BibTeX | EndNote (RIS)      

Abstract  Hydroxyapatite (HAP) nanoribbon spheres with well-defined nanoscale structures and regular morphology were successfully synthesized using a bioactive cooperate template. The spheres are about 5-6 μm in diameter and they form from nanoribbons of 2.5 to 3 μm in length. The morphologies, structures, and surface areas of the products were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and Brunauer-Emmett-Teller (BET) analysis. In addition, the products were used as carried materials for the synthesis of the HAP/ZnO composite catalyst. The degradation rate of rhodamine B (RhB) increased by 125% and the recovery increased by 23.1% when using the composite as a catalyst compared with the ZnO nanoparticles. Possible mechanisms for the formation of the HAP assembly microspheres and their synergistic action are also discussed.

Key wordsHAP      ZnO      Assembly sphere      Photocatalysis      Synergized action     
Received: 24 June 2011      Published: 30 September 2011
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (21071024), Science and Research Program of Anhui Province, China (10140702017), Key Project of Education Office of Anhui Provincem, China (KJ2010A244) and State Key Laboratory of Pollution Control, Resource Reuse Foundation, China (PCRRF09005).

Corresponding Authors: LIU Jin-Ku     E-mail:
Cite this article:

YANG Xiao-Hong, LIU Chang, LIU Jin-Ku, ZHU Zi-Chun. Facile Synthesis of Assembly HAP Nanoribbon Spheres and the Synergized Action of Its Photocatalytic Properties. Acta Phys. Chim. Sin., 2011, 27(12): 2939-2945.

URL:     OR

(1) Liu, J. K.;Wu, Q. S.; Ding, Y. P. Eur. J. Inorg. Chem. 2005, 20, 4145.
(2) Zhang, D.L.; Yang, C.F.; Sun, Y.P.; Fu, H.Y.; Li, R.X.; Chen, H.; Li, X. J. Acta Phys. -Chim. Sin. 2010, 26, 2711. [张定林, 杨朝芬, 孙亚萍, 付海燕, 李瑞祥, 陈华, 李贤均. 物理化学学报, 2010, 26, 2711.]
(3) Liu, J. K.; Yang, X. H.; Tian, X. G. Powd. Technol. 2008, 184, 21.
(4) Liu, J. K.; Cao, T.J.; Lu, Y.; Luo, C. X. Mater. Technol. 2009, 24, 88.
(5) Ye, F.; Guo, H. F.; Zhang, H. J. Acta Biomater. 2010, 6, 2212.
(6) Zhang, M.; Liu, J. K.; Miao, R.; Li, G. M.; Du, Y. J. Nanoscale Res. Le tt. 2010, 5, 675.
(7) Hu, X. J.; Liu, J. K.; Qin, X. Y.; Huang, J.; Yi, Y. Nano 2009, 4, 165.
(8) Hu, X. J.; Liu, J. K.; Lu, Y.; Mu, J. Mater. Lett. 2008, 62, 3824.  
(9) Guo, Y. P.; Zhu, Y.; Jia, D. C. Mater. Sci. Eng. C 2010, 30, 472.
(10) Cai, Y. R.; Pan, H. H.; Xu, X. R.; Hu,Q. H.; Li, L.; Tang, R. K. Chem. Mater. 2007, 19, 3081.
(11) Liu, Y.; Zhao, X.; Pan, Y.; Zhao, J.Z.;Wang, Z. C. Acta Phys. -Chim. Sin. 2009, 25, 1467. [刘莹, 赵旭, 潘琰, 赵敬哲, 王子忱. 物理化学学报, 2009, 25, 1467.]
(12) Liu, J. K.; Luo, C. X.; Quan, N. J. J. Nanopart. Res. 2008, 10, 531.
(13) Zhao, K. F.; Qiao, B. T.;Wang, J. H.; Zhang, Y. J.; Zhang, T. Chem. Commun. 2011, No.47, 1779.
(14) Sun, Y. P.; Fu, H. Y.; Zhang, D. L.; Li, R. X.; Chen, H.; Li, X. J. Cat. Commun. 2010, No.12, 188.
(15) Zhang, Y. J.;Wang, J. H.; Yin, J.; Zhao, K. F.; Jin, C. Z.; Huang, Y. Y.; Jiang, Z.; Zhang, T. J. Phys. Chem. C 2010, 114, 16443.
(16) Mitsionisa, A.; Vaimakisa, T.; Trapalisb, C.; Todorovab, N.; Bahnemannc, D.; Dillertc, R. Appl. Catal. B-Environ. 2011, 106, 398.
(17) Liu, Y. C.; Zhong, H.; Li, L. F.; Zhang, C. J.; Mater. Res. Bull. 2010, 45, 2036.
(18) Reddy, M. P.; Venugopal, A.; Subrahmanyam, M. Appl. Catal. B- Environ. 2007, 69, 164.
(19) Ma, N.; Zhang, Y. B.; Quan, X.; Fan, X. F.; Zhao, H. M. Water Res. 2010, 44, 6104.
(20) Nishikawa, H.; Omamiuda, K. J. Mol. Catal. A-Chem. 2002, 179, 193.
(21) Shao, F.W.; Cai, Y. R.; Yao, J. M. Chem. J. Chin. Univ. 2010, 31, 1093. [邵锋伟, 蔡玉荣, 姚菊明. 高等学校化学学报, 2010, 31, 1093.]
(22) Zhang, Y. J.; Lu, J. J. Nanotechnol. 2008, 19, 155608.
(23) Cai, Y. R.; Jin, J.; Mei, D. P.; Xia, N. X.; Yao, J. M. J. Mater. Chem. 2009, 19, 5751.
(24) Aidin, L.; Mahyar, M.; Matin, M.; Amir, K.; Saeid, Z.; Hamed, A.; Sadrnezhaad, S. K. J. Am. Ceram. Soc. 2008, 91, 3292.
(25) Liu, J. B.; Li, K.W.;Wang, H.; Zhu, M. K.; Xu, H. Y.; Yan, H. Nanotechnol. 2005, 16, 82.
(26) Pan, H. H.; Tao, J. H.; Yu, X.W.; Fu, L.; Zhang, J. L.; Zeng, X. X.; Xu, G.; Tang, R. K. J. Phys. Chem. B 2008, 112, 7162
(27) Wei, G.; Reichert, J.; Bossert, J.; Jandt, K. D. Biomacromolecules 2008, 9, 3258.
(28) Li, L. Y.; Song,W. H.; Chen, T. H. Acta Phys. -Chim. Sin. 2009,  25, 2404. [李丽颖, 宋文华, 陈铁红. 物理化学学报, 2009, 25, 2404.]
(29) Liu, J. K.; Xu, Z. Z.;Wu, Q. S. Nano 2007, 2, 97.
(30) Liu, J. K.;Wu, Q. S.; Ding, Y. P. Cryst. Growth Des. 2005, 5, 445.
(31) Huang, Z. L.; Zhang, L. M.; Liu, Y.; He, Q. J.; Chen,W. J. Synthetic Cryst. 2006, 35, 261. [黄志良, 张联盟, 刘羽, 何前军, 陈伟. 人工晶体学报, 2006, 35, 261.]
(32) Yang, X. H.; Luo, C. X.; Liu, J. K.;Wang, J. D.; Chen, L. Acta Phys. -Chim. Sin. 2009, 25, 173. [杨小红, 罗重霄, 刘金库, 王建栋, 陈磊. 物理化学学报, 2009, 25, 173.]
(33) Luo, C. X.;Wang, Y.; Liu, J. K.; Lian, J. S.; Chai, C. F. Acta Phys.-Chim. Sin. 2008, 24, 1007. [罗重霄, 王燕, 刘金库, 连加松, 柴春芳. 物理化学学报, 2008, 24, 1007.]
(34) Zhang, L.; Chen, D. R.; Jiao X. L. J. Phys. Chem. B 2006, 110, 2668.
(35) Hu, M. C.; Zhong, S. H. Chin. J. Catal. 2006, 27, 1144. [胡茂从, 钟顺和, 催化学报, 2006, 27,1144.]
(36) Yolanda, P.; Mariano, F.; Avelino, C. Catal. Commun. 2011, 12: 1071.
(37) Huang, J.;Wang, L.C.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. App. Catal. B-Environ. 2011, 101, 560.
(38) Hu, A. M.; Lei, T.; Li, M.; Chang, C. K.; Ling, H. Q.; Mao, D. L. Appl. Catal. B-Environ. 2006, 63, 41.
(39) Mineharu, T.; Masato,W.; Naoya, Y.; Toshiya,W. J. Mol. Catal. A- Chem. 2011, 338, 18.
(40) Zhang, L.W.; Cheng, H. Y.; Zong, R. L.; Zhu, Y. F. J. Phys. Chem. C 2009, 113, 2368.
[1] XU Li-Gang, QIU Wei, CHEN Run-Feng, ZHANG Hong-Mei, HUANG Wei. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. Chim. Sin., 2018, 34(1): 36-48.
[2] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[3] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[4] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[5] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[6] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[7] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2284-2292.
[8] WANG Yue-Hua, WANG Jun-Jie, LIANG Jin-Hua, WANG Jun-Ge, CHENG Jing, DING Zhong-Xie, LIU Zhen, REN Xiao-Qian. Shape-Selective Alkylation of Biphenyl with Cyclohexanol over MCM-22 Zeolite Catalyst Modified by SiO2[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2277-2283.
[9] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[10] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[11] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[12] CHANG Qiao-Wan, XIAO Fei, XU Yuan, SHAO Min-Hua. Core-Shell Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(1): 9-17.
[13] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[14] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[15] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.