Please wait a minute...
Acta Phys. Chim. Sin.  2011, Vol. 27 Issue (12): 2927-2932    DOI: 10.3866/PKU.WHXB20112927
PHYSICAL CHEMISTRY OF MATERIALS     
Formation Mechanism of Barium Titanate Nanoparticle Aggregations
ZHAN Hong-Quan, JIANG Xiang-Ping, LI Xiao-Hong, LUO Zhi-Yun, CHEN Chao, LI Yue-Ming
Jiangxi Key Laboratory of Advanced Ceramic Materials, Department of Material Science and Engineering,Jingdezhen Ceramic Institute, Jingdezhen 333403, Jiangxi Province, P. R. China
Download:   PDF(1181KB) Export: BibTeX | EndNote (RIS)      

Abstract  A novel nanoparticle aggregation structure of barium titanate was obtained by the hydrothermal method. Powder X-ray diffraction (XRD) revealed that the aggregates crystallized in the cubic phase. The crystallization of the products became more significant with reaction progress. The growth characteristics of the aggregates was further confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and electron diffraction (ED) spectroscopy. The aggregation was composed of many 5-8 nm nanoparticles by orientation attachment and we found that the ED patterns indicated a single-crystal property for the aggregates. The size of the aggregates was about 60 nm and they grew as the reaction continued. From the results of energy dispersive X-ray (EDX) spectroscopy analysis and kinetics modeling using the Johnson-Mehl-Avrami (JMA) equation, the diffusion nucleation of Ba2+ ion was found to be dominant during the early stages of aggregation formation. The growth process of “diffusion nucleation-orientation attachment”revealed the formation mechanism of barium titanate nanoparticle aggregations.

Key wordsBarium titanate      JMA equation      Hydrothermal method      Diffusion mechanism      Orientation attachment     
Received: 20 July 2011      Published: 10 October 2011
MSC2000:  O643.12  
Fund:  

The project was supported by the National Natural Science Foundation of China (91022027, 51062005, 50862005).

Corresponding Authors: JIANG Xiang-Ping, ZHAN Hong-Quan     E-mail: jiangxp64@163.com, zhq_0425@163.com
Cite this article:

ZHAN Hong-Quan, JIANG Xiang-Ping, LI Xiao-Hong, LUO Zhi-Yun, CHEN Chao, LI Yue-Ming. Formation Mechanism of Barium Titanate Nanoparticle Aggregations. Acta Phys. Chim. Sin., 2011, 27(12): 2927-2932.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20112927     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I12/2927

(1) Pithan, C.; Hennings, D.;Waser, R. Int. J. Appl. Ceram. Technol. 2005, 2, 1.  
(2) Lott, J.; Xia, C.; Kosnosky, L.;Weder, C.; Shan, J. Adv. Mater. 2008, 20, 3649.  
(3) Guo, H. F.; Zhang, X. T.; Liu, B.; Li, Y.C.; Huang, Y. B.; Du, Z. L. Acta Phys. -Chim. Sin. 2004, 20, 164. [郭惠芬, 张兴堂, 刘兵, 李蕴才, 黄亚彬, 杜祖亮. 物理化学学报, 2004, 20, 164.]
(4) Ding, S.W.; Zhai, Y. Q.; Li, Y.;Wang, Z. Q.; Li, J. L. Sci. China Ser. B-Chem. 2000, 43, 283.  
(5) Ruan, S. P.; Dong,W.;Wu, F. Q.;Wang, Y.W.; Yu, T.; Peng, Z. H.; Xuan, L. Acta Phys. -Chim. Sin. 2003, 19, 17. [阮圣平, 董玮, 吴凤清, 王永为, 于涛, 彭增辉, 宣丽. 物理化学学报, 2003, 19, 17.]
(6) Cui, B.;Wang, X.; Li, Y. D. Chem. J. Chin. Univ. 2007, 28, 1. [崔斌, 王训, 李亚栋. 高等学校化学学报, 2007, 28, 1.]
(7) O'Brien, S.; Brus, L.; Murray, C. B. J. Am. Chem. Soc. 2001, 123, 12085.  
(8) Zhu, Q. A.; Song, F. P.; Chen,W. P.;Wang, S. F.; Sun, X. F.; Zhang, Q. Chem. J. Chin. Univ. 2006, 27, 1612. [朱启安, 宋方平, 陈万平, 王树峰, 孙旭峰, 张琪. 高等学校化学学报, 2006, 27, 1612.]
(9) Urban, J. J.; Yun,W. S.; Gu, Q.; Park, H. J. Am. Chem. Soc. 2002, 124, 1186.  
(10) Mao, Y.; Banerjee, S.;Wong, S. S. J. Am. Chem. Soc. 2003, 125, 15718.  
(11) Hernandez, B. A.; Chang, K. S.; Fisher, E. R.; Dorhout, P. K. Chem. Mater. 2002, 14, 480.  
(12) Nakano, H.; Nakamura, H. J. Am. Ceram. Soc. 2006, 89, 1455.  
(13) Buscaglia, M. T.; Viviani, M.; Zhao, Z.; Buscaglia, V.; Nanni, P. Chem. Mater. 2006, 18, 4002.  
(14) Hua, Z. H.; Li, D.; Fu, H. Acta Phys. -Chim. Sin. 2009, 25, 145. [华正和, 李东, 付浩. 物理化学学报, 2009, 25, 145.]
(15) Wei, J. H.; Shi, J.; Guan, J. G.; Yuan, R. Z. Acta Phys. -Chim. Sin. 2003, 19, 657. [魏建红, 石兢, 官建国, 袁润章. 物理化学学报, 2003, 19, 657.]
(16) Wang, T. X.; Yang, C.; Huang, P.; Zhao, G. P.; Li, Y. R. Chin. J. Inorg. Chem. 2009, 25, 1414. [王婷霞, 杨春, 黄平, 赵国平, 李言荣. 无机化学学报, 2009, 25, 1414.]
(17) Xia, C. T.; Shi, E.W.; Zhong,W. Z.; Guo, J. K. Sci. China Ser. B- Chem. 1995, 40, 2002.
(18) Zhong,W. Z.; Liu, G. Z.; Shi, E.W.; Hua, S. K.; Tang, D. Y.; Zhao, Q. L. Sci. China Ser. B: Chem- 1994, 37, 1288.
(19) Li, Q. L.; Chen, S. T.; Yao, P.;Wei, G.; Qu, Y. H. Acta Phys. -Chim. Sin. 2000, 16, 170. [李青莲, 陈寿田, 姚朴, 魏国, 曲永和. 物理化学学报, 2000, 16, 170.]
(20) Eckert, J. O.; Hung-Houston, C. C.; Gerstan, B. L.; Lenka, M. M.; E. Riman, R. J. Am. Ceram. Soc 1996, 79, 2929.  
(21) Walton, R. I.; Millange, F.; Smith, R. I.; Hansen, T. C.; O' Hare, D. J. Am. Chem. Soc. 2001, 123, 12547.  
(22) Testino, A.; Buscaglia, V.; Buscaglia, M. T.; Viviani, M.; Nanni, P. Chem. Mater. 2005, 17, 5346.  
(23) Testino, A.; Buscaglia, M. T.; Buscaglia, V.; Viviani, M.; Bottino, C.; Nanni, P. Chem. Mater. 2004, 16, 1536.  
(24) Shi, E.W.; Xia, C. T.;Wang, B. G.; Zhong,W. Z. J. Inorg. Mater. 1996, 11, 193. [施尔畏, 夏长泰, 王步国, 仲维卓. 无机材料学报, 1996, 11, 193.]
(25) Shi, E.W.; Chen, Z. Z.; Yuan, R. L.; Zheng, Y. Q. Hydrothermal Crystallography. Scicne Press: Beijing, 2004; pp 222-249. [施尔畏, 陈之战, 元如林, 郑燕青. 水热结晶学. 北京: 科学出版社, 2004: 222-249.]
(26) Penn, R. L.; Banfield, J. F. Geochim. Cosmochim. Acta 1999, 63, 1549.  
(27) Penn, R. L.; Banfield, J. F. Science 1998, 281, 969.  
(28) Hou, R. Z.; Ferreira, P.; Vilarinho, P. M. Chem. Mater. 2009, 21, 3536.  
(29) Wang, T. X.; Colfen, H.; Antonietti, M. J. Am. Chem. Soc. 2005, 127, 3246.  
(30) Colfen, H.; Antonietti, M. Angew. Chem. Inter. Edit. 2005, 44, 5576.  
(31) Wang, T.; Antonietti, M.; Cölfen, H. Chem. Eur. J. 2006, 12, 5722.  
(32) Liu, Z.;Wen, X. D.;Wu, X. L.; Gao, Y. J.; Chen, H. T.; Zhu, J.; Chu, P. K. J. Am. Chem. Soc. 2009, 131, 9405.  
(33) Nassif, N.; Pinna, N.; Gehrke, N.; Antonietti, M.; Jager, C.; Colfen, H. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 12653.  
(34) Croker, D.; Loan, M.; Hodnett, B. K. Cryst. Growth Des. 2009, 9, 2207.  
(35) Zhou, Y.; Antonova, E.; Bensch,W.; Patzke, G. R. Nanoscale 2010, 2, 2412.  
[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. Chim. Sin., 2018, 34(2): 168-176.
[2] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. Chim. Sin., 2016, 32(2): 551-557.
[3] HU Hai-Feng, HE Tao. Controlled Aspect Ratio Modulation of ZnO Nanorods via Indium Doping[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1421-1429.
[4] CHEN Yang, ZHANG Zi-Lan, SUI Zhi-Jun, LIU Zhi-Ting, ZHOU Jing-Hong, ZHOU Xing-Gui. Preparation and Electrochemical Performance of Ni(OH)2 Nanowires/ Three-Dimensional Graphene Composite Materials[J]. Acta Phys. Chim. Sin., 2015, 31(6): 1105-1112.
[5] LI Xiang-Qi, FAN Qing-Fei, LI Guang-Li, HUANG Yao-Han, GAO Zhao, FAN Xi-Mei, ZHANG Chao-Liang, ZHOU Zuo-Wan. Syntheses of ZnO Nano-Arrays and Spike-Shaped CuO/ZnO Heterostructure[J]. Acta Phys. Chim. Sin., 2015, 31(4): 783-792.
[6] ZHANG Yuan-Hang, WANG Zhi-Yuan, SHI Chun-Sheng, LIU En-Zuo, HE Chun-Nian, ZHAO Nai-Qin. Synthesis of Uniform Nickel Oxide Nanoparticles Embedded in Porous Hard Carbon Spheres and Their Application in High Performance Li-Ion Battery Anode Materials[J]. Acta Phys. Chim. Sin., 2015, 31(2): 268-276.
[7] QI Qi, WANG Yu-Qiao, WANG Sha-Sha, QI Hao-Nan, WEI Tao, SUN Yue-Ming. Preparation of Reduced Graphene Oxide/TiO2 Nanocomposites and Their Photocatalytic Properties[J]. Acta Phys. Chim. Sin., 2015, 31(12): 2332-2340.
[8] YU Hua-Feng, ZHANG Guo-Pei, HAN Li-Na, CHANG Li-Ping, BAO Wei-Ren, WANG Jian-Cheng. Cu-SSZ-13 Catalyst Synthesized under Microwave Irradiation and Its Performance in Catalytic Removal of NOx from Vehicle Exhaust[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2165-2173.
[9] LIN Cai-Fang, CHEN Xiao-Ping, CHEN Shu, SHANGGUAN Wen-Feng. Preparation of NiS-Modified Cd1-xZnxS by a Hydrothermal Method and Its Use for the Efficient Photocatalytic H2 Evolution[J]. Acta Phys. Chim. Sin., 2015, 31(1): 153-158.
[10] WANG Jian-De, PENG Tong-Jiang, XIAN Hai-Yang, SUN Hong-Juan. Preparation and Supercapacitive Performance of Three-Dimensional Reduced Graphene Oxide/Polyaniline Composite[J]. Acta Phys. Chim. Sin., 2015, 31(1): 90-98.
[11] LI Qing-Zhou, LI Yu-Hui, LI Ya-Juan, LIU You-Nian. One-Step Hydrothermal Preparation and Electrochemical Performance of Graphene/Sulfur Cathode Composites[J]. Acta Phys. Chim. Sin., 2014, 30(8): 1474-1480.
[12] WANG Jian-De, PENG Tong-Jiang, SUN Hong-Juan, HOU Yun-Dan. Effect of the Hydrothermal Reaction Temperature on Three-Dimensional Reduced Graphene Oxide's Appearance, Structure and Super Capacitor Performance[J]. Acta Phys. Chim. Sin., 2014, 30(11): 2077-2084.
[13] TANG Jia-Yong, CAO Pei-Qi, FU Yan-Bao, LI Peng-Hui, MA Xiao-Hua. Synthesis of a Mesoporous Manganese Dioxide-Graphene Composite by a Simple Template-Free Strategy for High-Performance Supercapacitors[J]. Acta Phys. Chim. Sin., 2014, 30(10): 1876-1882.
[14] ZHAO Ning-Ning, HE Cui-Cui, LIU Jian-Bing, MA Hai-Xia, AN Ting, ZHAO Feng-Qi, HU Rong-Zu. Preparation and Characterization of Superthermite Al/Fe2O3 and Its Effect on Thermal Decomposition of Cyclotrimethylene Trinitramine[J]. Acta Phys. Chim. Sin., 2013, 29(12): 2498-2504.
[15] ZHAO Wei-Rong, XI Hai-Ping, LIAO Qiu-Wen. Cu-Doped Titania Nanotubes for Visible-Light Photocatalytic Mineralization of Toluene[J]. Acta Phys. Chim. Sin., 2013, 29(10): 2232-2238.