Please wait a minute...
Acta Phys. Chim. Sin.  2011, Vol. 27 Issue (12): 2836-2840    DOI: 10.3866/PKU.WHXB20112836
Preparation and Characterization of Peanut Shell-Based Microporous Carbons as Electrode Materials for Supercapacitors
GUO Pei-Zhi1, JI Qian-Qian1, ZHANG Li-Li2, ZHAO Shan-Yu2, ZHAO Xiu-Song1,2
1. Laboratory of New Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, School of Chemistry,Chemical Engineering and Environmental Sciences, Qingdao University, Qingdao 266071, Shandong Province,P. R. China;
2. Department of Chemical and Biomolecular Engineering, National University of Singapore,4 Engineering Drive 4, Singapore 117576
Download:   PDF(480KB) Export: BibTeX | EndNote (RIS)      

Abstract  Microporous carbons (PSC-1 and PSC-2) were obtained directly by the carbonization of peanut shells without and with NaOH solution pretreatment, respectively. Both samples have a main pore size of ~0.8 nm. The surface area increases from 552 m2·g-1 for PSC-1 to 726 m2·g-1 for PSC-2. Cyclic voltammograms (CVs) of the PSC-1 and PSC-2 electrodes and the symmetrical supercapacitors show almost rectangular shape indicating excellent capacitance features. The specific capacitances of PSC-1 and PSC-2 can reach 233 and 378 F·g-1, respectively, at a current density of 0.1 A·g-1 in a three-electrode system using porous carbon as the working electrode, a platinum electrode as the counter electrode and a Ag/AgCl electrode as the reference electrode. Furthermore, the electrodes in both three-electrode systems and supercapacitors show high stability and capacitance retainability after 1000 cycles. The formation mechanisms for the two microporous carbons and the relationship between the carbon materials and their electrochemical properties are discussed based on the experimental results.

Key wordsSupercapacitor      Electrode      Microporous carbon      Peanut shell      Capacitance     
Received: 18 July 2011      Published: 13 October 2011
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (20803037, 21143006), Foundation of Qingdao Municipal Science and Technology Commission, China (11-2-4-2-(8)-jch) and“Taishan Scholar”Program of Shandong Province, China.

Corresponding Authors: GUO Pei-Zhi, ZHAO Xiu-Song     E-mail:;
Cite this article:

GUO Pei-Zhi, JI Qian-Qian, ZHANG Li-Li, ZHAO Shan-Yu, ZHAO Xiu-Song. Preparation and Characterization of Peanut Shell-Based Microporous Carbons as Electrode Materials for Supercapacitors. Acta Phys. Chim. Sin., 2011, 27(12): 2836-2840.

URL:     OR

(1) Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Science 2006, 313, 1760.  
(2) Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245.  
(3) Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum Publisher: New York, 1999.
(4) Burke, A. J. Power Sources 2000, 91, 37.  
(5) Kötz, R.; Carlen, M. Electrochim. Acta 2000, 45, 2483.  
(6) Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38, 2520.  
(7) Alvarez, S.; Blanco-Lopez, C.; Miranda-Ordieres, A. J.; Fuertes, A. B.; Centeno, T. A. Carbon 2005, 43, 866-870.
(8) Li,W.; Zhou, J.; Xing,W.; Zhuo, S. P.; Lü, Y. M. Acta Phys. -Chim. Sin. 2011, 27, 620. [李文, 周晋, 邢伟, 禚淑萍, 吕忆民. 物理化学学报, 2011, 27, 620.]
(9) Wang, D.W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. Angew. Chem. Int. Ed. 2008, 47, 373.  
(10) Raymundo-Piñero, E.; Leroux, F.; Béguin, F. Adv. Mater. 2006, 18, 1877.  
(11) Ji, Q. Q.; Guo, P. Z.; Zhao, X. S. Acta Phys. –Chim. Sin. 2010, 26, 1254. [季倩倩, 郭培志, 赵修松. 物理化学学报, 2010, 26, 1254.]
(12) Zhang, C. X.; Long, D. H.; Xing, B. L.; Qiao,W. M.; Zhang, R.; Zhan, L.; Liang, X. Y.; Ling, L. C. Electrochem. Commun. 2008, 10, 1809.  
(13) Vilaplana-Ortego, E.; Lillo-Ródenas, M. A.; Alcañiz-Monge, J.; Cazorla-Amorós, D.; Linares-Solano, A. Carbon 2009, 47, 2141.  
(14) Wilson, K.; Yang, H.; Seo C.W.; MarshallW. E. Bioresour. Technol. 2006, 97, 2266.  
(15) Watanabe, I.; Doi, T.; Yamaki, J.; Lin, Y. Y.; Fey, G. T. K. J. Power Sources 2008, 176, 347.  
(16) Girgis, B. S.; Yunis, S. S.; Soliman, A. F. Mater. Lett. 2002, 57, 164.  
(17) Li, Y. H.; Du, Q. J.;Wang, X. D.; Zhang, P.;Wang, D. C.;Wang, Z. H.; Xia, Y. Z. J. J. Hazard. Mater. 2010, 183, 583.  
(18) Yang, J.; Qiu, K. Q. Chem. Eng. J. 2010, 165, 209.  
(19) Garg, U. K.; Kaur, M. P.; Garg, V. K.; Sud, D. J. Hazard. Mater. 2007, 140, 60.  
(20) Singh, K. P.; Mohan, D.; Sinha, S.; Tondon, G. S.; Gosh, D. Ind. Eng. Chem. Res. 2003, 42, 1965.  
(21) Karagoz, S.; Tay, T.; Ucar, S.; Erdem, M. Bioresour. Technol. 2008, 99, 6214.  
(22) Wang, L. L.; Han, G. T.; Zhang, Y. M. Carbohyd. Polym. 2007, 69, 391.  
(23) Janes, A.; Permann, L.; Arulepp, M.; Lust, E. Electrochem. Commun. 2004, 6, 313.  
(24) Wang, D.W.; Li, F.; Zhao, J. P.; Ren,W. C.; Chen, Z. G.; Tan, J.;Wu, Z. S.; Gentle, I.; Lu, G. Q.; Cheng, H. M. ACS Nano 2009, 3, 1745.  
(25) Peng, C.; Jin, J.; Chen, G. Z. Electrochim. Acta 2007, 53, 525.  
(26) Zheng, J. P. J. Electrochem. Soc. 2003, 150, A484.
(27) Eliad, L.; Salitra, G.; Soffer, A.; Aurbach, D. J. Phys. Chem. B 2002, 106, 10128.  
(28) Yang, X. H.;Wang, Y. G.; Xiong, H. M.; Xia, Y. Y. Electrochim. Acta 2007, 53, 752.  
(29) Stoller, M. D.; Ruoff, R. S. Energy Environ. Sci. 2010, 3, 1294.  
(30) Khomenko, V.; Frackowiak, E.; Béguin, F. Electrochim. Acta 2005, 50, 2499.  
[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] XU Li-Gang, QIU Wei, CHEN Run-Feng, ZHANG Hong-Mei, HUANG Wei. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. Chim. Sin., 2018, 34(1): 36-48.
[3] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[4] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[5] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[6] ZHAO Feng-Ming, WEN Gang, KONG Li-Yao, CHU You-Qun, MA Chun-An. Structure Characteristic of Titanium Nitride Nanowires and Its Electrode Processes for V(II)/V(III) Redox Couple[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1181-1188.
[7] ZHAO Li-Ping, MENG Wei-Shuai, WANG Hong-Yu, QI Li. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Phys. Chim. Sin., 2017, 33(4): 787-794.
[8] XIA Rui, WANG Shi-Mao, DONG Wei-Wei, FANG Xiao-Dong. Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells[J]. Acta Phys. Chim. Sin., 2017, 33(4): 670-690.
[9] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. Chim. Sin., 2017, 33(2): 329-343.
[10] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[11] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2510-2516.
[12] LI Dao-Yan, ZHANG Ji-Chen, WANG Zhi-Yong, JIN Xian-Bo. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2245-2252.
[13] HE Ya-Peng, CHEN Rong-Ling, WANG Chao-Nan, LI Hong-Dong, HUANG Wei-Min, LIN Hai-Bo. Electrochemical Oxidation of Substituted Phenols on a Boron Doped Diamond Electrode[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2253-2260.
[14] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[15] ZENG Xiang-Dong, ZHAO Xiao-Yu, WEI Hui-Ge, WANG Yan-Fei, TANG Na, SHA Zuo-Liang. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2035-2041.