Please wait a minute...
Acta Phys. Chim. Sin.  2011, Vol. 27 Issue (12): 2953-2959    DOI: 10.3866/PKU.WHXB20112953
PHYSICAL CHEMISTRY OF MATERIALS     
Direct Graphene Growth by Depositing Carbon Atoms on Si Substrate Covered by SiC Buffer Layers
TANG Jun1,2, KANG Chao-Yang1, LI Li-Min1, XU Peng-Shou1
1. National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China;
2. Hefei IRICO Epilight Technology Co., Ltd., Hefei 230011, P. R. China
Download:   PDF(987KB) Export: BibTeX | EndNote (RIS)      

Abstract  Graphene is a newly discovered material with many functions. The preparation of graphene on suitable substrates is a challenge in the material preparation field. In this paper, graphene thin films were grown on Si substrates covered with SiC buffer layers (SiC/Si) by the direct deposition of carbon atoms using molecular beam epitaxy (MBE) equipment. The structural properties of the samples produced at different substrate temperatures (800, 900, 1000, 1100 ° C) were investigated by reflection high energy electron diffraction (RHEED), Raman spectroscopy and near-edge X-ray absorption fine structure (NEXAFS). The results indicate that the thin films grown at all temperatures exhibit the characteristics of graphene with a turbostratic stacking structure. As the substrate temperature increases the crystalline quality of the graphene improves. However, a very high temperature decreases the quality of graphene. The best graphene films were obtained at a substrate temperature of 1000 ° C. This is due to the low substrate temperature resulting in a too low carbon atom activity for the formation of an ordered six-member ring of C-sp2. When the substrate temperature was too high the silicon atoms in the substrate became so active that silicon atoms diffused to the surface of the sample through SiC buffer defects and they bonded to the depositing carbon atoms, which resulted in a lower crystallization quality of the carbon layers.

Key wordsGraphene      Molecular beam epitaxy      Si substrate      SiC      Synchrotron radiation     
Received: 13 July 2011      Published: 18 October 2011
MSC2000:  O641  
  O472  
  O59  
  O782  
Fund:  

The project was supported by the National Natural Science Foundation of China (50872128).

Corresponding Authors: XU Peng-Shou     E-mail: psxu@ustc.edu.cn
Cite this article:

TANG Jun, KANG Chao-Yang, LI Li-Min, XU Peng-Shou. Direct Graphene Growth by Depositing Carbon Atoms on Si Substrate Covered by SiC Buffer Layers. Acta Phys. Chim. Sin., 2011, 27(12): 2953-2959.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20112953     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I12/2953

(1) Novoselov, K. S.; Geim, A. K.; Firsov, A. A. Science 2004, 306, 666.  
(2) Service, R. F. Science 2009, 324, 875.  
(3) Morzov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Phys. Rev. Lett. 2008, 100, 016602.  
(4) Balandin, A. A.; Ghosh, S.; Bao,W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902.  
(5) Ganhua, L.; Ocola, L. E.; Junhong, C. Appl. Phys. Lett. 2009, 123, 083111.
(6) Kang, C. Y.; Tang, J.; Li, L. M.; Pan, H. B.; Yan,W. S.; Xu, P. S.;Wei, S. Q.; Chen, X. F.; Xu, X. G. Acta Phys. Sin. 2011, 60, 047302. [康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 物理学报, 2011, 60, 047302.]
(7) Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. J. Phys. Chem. B 2004, 108, 19912.  
(8) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.  
(9) Di, C. A.;Wei, D. C.; Yu, G.; Liu, Y. Q.; Guo, Y. L.; Zhu, D. B. Adv. Mater. 2008, 20, 3289.  
(10) Wu, J. S.; Pisula,W.; Mullen, K. Chem. Rev. 2007, 107, 718.  
(11) Hackley, J.; Ali, D.; DiPasquale, J.; Demaree, J. D.; Richardson, C. J. K. Appl. Phys. Lett. 2009, 95, 133114.  
(12) Ouerghi, A.; Kahouli, A.; Lucot, D.; Portail, M.; Travers, L.; Gierak, J.; Penuelas, J. P.; Shukla, A.; Chassagne, T.; Zielinski, M. Appl. Phys. Lett. 2010, 96, 191910.  
(13) Tang, J.; Liu, Z. L.; Kang, C. Y.; Yan,W. S.; Xu, P. S.; Pan, H. B.;Wei, S. Q.; Gao, Y. Q.; Xu, X. G. Acta Phys. -Chim. Sin. 2010, 26, 253. [唐军, 刘忠良, 康朝阳, 闫文盛, 徐彭寿, 潘海斌, 韦世强, 高玉强, 徐现刚. 物理化学学报, 2010, 26, 253.]
(14) Suemitsu, M.; Fukidome, H. J. Phys. D: Appl. Phys. 2010, 43, 374012.  
(15) Tang, J.; Kang, C. Y.; Li, L. M.; Yan,W. S.;Wei, S. Q.; Xu, P. S. Phys. E 2011, 43, 1415.  
(16) Liu, Z. L.; Liu, J. F.; Ren, P.; Xu, P. S. Journal of Inorganic Materials 2008, 23, 549. [刘忠良, 刘金峰, 任鹏, 徐彭寿. 无机材料学报, 2008, 23, 549.]  
(17) Liu, Z. L.; Liu, J. F.; Ren, P.; Xu, P. S. Chinese Journal of Vacuum Science and Technology 2008, 4, 992. [刘忠良, 刘金峰, 任鹏, 徐彭寿. 真空科学与技术学报, 2008, 4, 992]
(18) Liu, J. F.; Liu, Z. L.;Wu, Y. Y.; Xu, P. S. Journal of Inorganic Materials 2007, 22, 720. [刘金峰, 刘忠良, 武煜宇, 徐彭寿. 无机材料学报, 2007, 22, 720.]
(19) Ni, Z. H.; Chen,W.; Fan, X. F.; Kuo, J. L.; Yu, T.;Wee, A. T. S.; Shen, Z. X. Phys. Rev. B 2008, 77, 115416.  
(20) Röhrl, J.; Hundhausen, M.; Emtsev, K. V.; Seyller, T.; Graupner, R.; Ley, L. Appl. Phys. Lett. 2008, 92, 01918.
(21) Thomsen, C.; Reich, S. Phys. Rev. Lett. 2000, 85, 5214
(22) Pimenta, M. A.; Dresselhaus, G..; Dresselhaus, M. S.; Cancado, L. G.; Jorioa, A.; Saito, R. Phys. Chem. Chem. Phys 2007, 9, 1276.
(23) Ferralis, N.; Maboudian, R.; Carraro, C. Phys. Rev. Lett. 2008, 101, 156801.  
(24) Cancado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhaes-Paniago, R.; Pimenta, M. A. Appl. Phys. Lett. 2006, 88, 163106.  
(25) Malarda, L. M.; Pimentaa, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Phys. Rep. 2009, 473, 51.  
(26) Faugeras, C.; Nerrire, A.; Potemski, M.; Mahmood, A.; Dujardin, E.; Berger, C.; de Heer,W. A. Appl. Phys. Lett. 2008, 92, 011914.  
(27) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Phys. Rev. Lett. 2006, 97, 187401.  
(28) Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund, P. C. Nano Lett. 2006, 6, 2667.  
(29) Batson, P. E. Phys. Rev. B 1993, 48, 2608.  
(30) Fischer, D. A.;Wentzcovitch, R. M.; Carr, R. G.; Continenza, A.; Freeman, A. J. Phys. Rev. B 1991, 44, 1427.  
(31) Coleman, V. A.; Kunt, R.; Karis, O. J. Phys. D: Appl. Phys. 2008, 41, 062001
(32) Pedio, M.; Giglia, A.; Mahne, N. Phys. Scr. 2005, 115, 308.
[1] SONG Xue-Jiao, LIU Zhuang. Applications of Nanotechnology for Physical Stimulus-Responsive Cancer Therapies[J]. Acta Phys. Chim. Sin., 2018, 34(2): 123-139.
[2] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. Chim. Sin., 2018, 34(2): 168-176.
[3] LEI Jinglei, PENG Haonan, GAO Feixue. Review on the Excellent Young Scientists Fund by NSFC in the Fields of Physical Chemistry[J]. Acta Phys. Chim. Sin., 2018, 34(1): 108-112.
[4] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[5] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[6] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[7] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[8] ZHAO Wen-Rong, HAO Jing-Cheng, Heinz Hoffmann. Vesicle Gels of Magnetic Asymmetric Surfactants[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1655-1664.
[9] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[10] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[11] LI Xu, LI Qiang-Guo, JIANG Jian-Hong, GU Hui-Wen, LI Chuan-Hua, XIAO Sheng-Xiong, LI Xia. Design and Application of a Precise Isoperibol Combus-tion-Solution-Reaction Microcalorimeter[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1114-1122.
[12] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[13] YUAN Kang, ZHOU Xue, DU Jian-Zhong. Synthesis and Characterization of Thermo-Responsive Polypeptide-Based Vesicles with Photo-Cross-Linked Membranes[J]. Acta Phys. Chim. Sin., 2017, 33(4): 656-660.
[14] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. Chim. Sin., 2017, 33(3): 520-529.
[15] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.