Please wait a minute...
Acta Phys. -Chim. Sin.  2011, Vol. 27 Issue (12): 2933-2938    DOI: 10.3866/PKU.WHXB20112933
PHYSICAL CHEMISTRY OF MATERIALS     
Microwave-Assisted Hydrothermal Synthesis of Ag-Loaded Titania Nanotubes and Their Photocatalytic Performance
CHEN Shu-Hai1,2, XU Yao1, LÜ Bao-Liang1, WU Dong1
1. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China;
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download:   PDF(924KB) Export: BibTeX | EndNote (RIS)      

Abstract  Ag-loaded titania nanotubes were synthesized by a microwave-assisted hydrothermal method and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS), and UV-visible (UV-Vis) diffuse reflectance spectroscopy. The titania nanotubes were found to be in the anatase phase after calcination. The length of the synthesized titania nanotubes was about 200 nm, the average outer diameter was 7-8 nm, the inner diameter was 5-6 nm and the specific surface area was found to be 371 m2·g-1. With Ag loading the silver atoms did not enter the lattices of the nanotubes but dispersed over the nanotube surface. Ag-loading had no effect on the nanostructure and the crystal phase of the TiO2 nanotubes. The Ag-loaded titania nanotubes showed obvious visible light absorption and enhanced visible photocatalytic performance. The photocatalytic activity was evaluated by the photodegradation of a Rhodamine B aqueous solution under visible light. Compared with Ag-loaded P25 and pure titania nanotubes the Ag-loaded titania nanotubes enhanced the photoactivity and reached the maximum activity at a Ag/Ti molar ratio of 0.5%.

Key wordsTitania nanotube      Microwave synthesis      Silver loading      Visible photocatalysis     
Received: 20 July 2011      Published: 19 October 2011
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (10835008).

Corresponding Authors: XU Yao     E-mail: xuyao@sxicc.ac.cn
Cite this article:

CHEN Shu-Hai, XU Yao, LÜ Bao-Liang, WU Dong. Microwave-Assisted Hydrothermal Synthesis of Ag-Loaded Titania Nanotubes and Their Photocatalytic Performance. Acta Phys. -Chim. Sin., 2011, 27(12): 2933-2938.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB20112933     OR     http://www.whxb.pku.edu.cn/Y2011/V27/I12/2933

(1) Jiang, Z.;Yang, F.; Luo, N.; Chu, B.; Sun, D.; Shi, H. H.; Xiao, T. C.; Edwards. P. P. Chem Commun. 2008, No. 47, 6372.
(2) Jaturong, J.; Yoshikazu, S.; Susumu, Y. Catal Commun. 2008, 9, 1265.  
(3) Ikeda.T.; Nomoto.T.; Eda. K.; Mizutani. Y.; Kato. H.; Kudo. A.; Onishi. H. J. Phys. Chem. C 2008, 112, 1167.  
(4) Yu, A. M.;Wu, G. J.; Zhang, F. X.; Yang, Y. L.; Guan, N. J. Catal Lett. 2009, 129, 507.  
(5) Kudo, A.; Niishiro, R.; Iwase, A.; Kato, H. Chem. Phys. 2007, 339, 104.  
(6) Kowalska, E.; Mahaney, O. O. P.; Abe, R.; Ohtani, B. Phys. Chem. Chem. Phys. 2010, 12, 2344.
(7) Kowalska, E.; Abe, R.; Ohtani, B. Chem. Commun. 2009, No. 2, 241.
(8) Sakthivel, S.; Shankar, M. V.; Palanichamy, M.; Arabindoo, B.; Bahnemann, D.W.; Murugesan V. Water Res. 2004, 38, 3001.  
(9) Vijayan, B. K.; Dimitrijevic, N. M.;Wu, J.; Gray, K. A. J. Phys. Chem. C 2010, 114, 21262.  
(10) Sobana, N.; Muruganadham, M.; Swaminathan, M. J. Mol. Catal. A-Chem. 2006, 258, 124.  
(11) Liang, Y. Q.; Cui, Z. D.; Zhu, S. L.; Liu, Y.; Yang, X. J. J. Catal. 2011, 278, 276.  
(12) Wen, B. M.; Liu, C. Y.; Liu, Y. Inorg. Chem. 2005, 44, 6503.  
(13) Cheng, B.; Le, Y.; Yu, J. G. J. Hazard. Mater. 2010, 177, 971.  
(14) Li, X. Y.; Zou, X. J.; Qua, Z. P.; Zhao, Q. D.;Wang, L. Z. Chemosphere. 2011, 83, 674.  
(15) Jung, J. H.; Kobayashi, H.; Bommel, K. J. C.; Shinkai, S.; Shimizu, T. Chem. Mater. 2002, 14, 1445.  
(16) Zhang, Y. J.; Li, X. F.; Chen, D.; Ma, N. H.; Hua, X. S.;Wang, H.W. Scripta Mater. 2009, 60, 543.  
(17) Tsai, C. C.; Teng, H. Chem. Mater. 2004, 16, 4352.  
(18) Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.;Walsh, F. C. J. Mater. Chem. 2004, 14, 3370.  
(19) Qamar, M.; JKim, S.; Ganguli, A. K. Nanotechnology 2009, 20, 455703.  
(20) Long, H. J.;Wang, E. J.; Dong, J. Z.;Wang, L. L.; Cao, Y. Q.; Yang,W. S.; Cao, Y. A. Acta Chim. Sin. 2009, 67, 1533. [龙绘锦, 王恩君, 董江舟, 王玲玲, 曹永强, 杨文胜, 曹亚安, 化学学报, 2009, 67, 1533.]
(21) Li, J. X.; Xu, J. H.; Dai,W. L.; Fan, K. N. J. Phys. Chem. C 2009, 113, 8343.  
(22) He, Z. Q.; Xie, L.; Song, S.;Wang, C.; Tu, J. J.; Hong, F. Y.; Liu, Q.; Chen, J. M.; Xu, X. H. J. Mol. Catal A-Chem. 2010, 319, 78.  
(23) Yang, X.;Wang, Y. H.; Xu, L. L.; Yu, X. D.; Guo, Y. H. J. Phys. Chem. C 2008, 112, 11481.  
(24) Wang, P.; Huang, B. B.; Zhang, X. Y.; Qin, X. Y.; Jin, H.; Dai, Y.;Wang, Z. Y.;Wei, J. Y.; Zhan, J.;Wang, S. Y.;Wang, J. P. Whangbo, M. H. Chem. Eur. J. 2009, 15, 1821.  
(25) Takirawa, T.;Watanabe, T.; Honda, K. J. Phys. Chem. 1978, 82, 1391.  
(26) Kim,W.; Tachikawa, T.; Majima, T.; Li, C.; Kim, H. J.; Choi, W. Energy Environ. Sci. 2010, 3, 1789.  
(27) Chen, Q. F.; Shi,W. M.; Xu, Y.Wu, D. Sun,Y. H. Mater. Chem. Phys. 2011, 125, 825.  
[1] Jin-Long LIU,Liang-Zhen LIN,Jin-Feng HU,Ming-Jie BAI,Liang-Xian CHEN,Jun-Jun WEI,Li-Fu HEI,Cheng-Ming LI. Reaction Process and Luminescence Mechanism of Carbon Nanodots Prepared by Microwave Synthesis[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 92-98.
[2] WANG Wen-Li, LIN Hong, ZHANG Luo-Zheng, LI Xin, CUI Bai, LI Jian-Bao. Electrochemical Impedance Spectroscopy Analysis of an Electrophoretic Titania Nanotube/Nanoparticle Composite Film[J]. Acta Phys. -Chim. Sin., 2010, 26(05): 1249-1253.
[3] HU Guo-Rong, CAO Yan-Bing, PENG Zhong-Dong, DU Ke, JIANG Qing-Lai. Preparation of Li2FeSiO4 Cathode Material for Lithium-Ion Batteries by Microwave Synthesis[J]. Acta Phys. -Chim. Sin., 2009, 25(05): 1004-1008.
[4] LUO Xiao-Lin; CHEN Ya-Shao; CHANG Peng-Mei; YANG De-Suo; JIANG Luan. Synthesis of SAPO-11 Molecular Sieve Microspheres Using a Microwave Technique and Mediated by Ionic Micelles[J]. Acta Phys. -Chim. Sin., 2009, 25(01): 137-144.
[5] YIN Yu-Xin; JIN Zheng-Guo; TAN Xin; HOU Feng; ZHAO Lin. Effect of Anions on the Electrochemical Formation of TiO2 Nanotube Arrays in a Glycerol Based Electrolyte[J]. Acta Phys. -Chim. Sin., 2008, 24(11): 2133-2138.
[6] LI Wei; RONG Hua; WU Xin-Min; CHEN Zhong-Yuan. Microwave Synthesis, Characterization and Theoretical Study of para-Toluenesulfonic Acid Threonine Salt and Its Ester Derivatives[J]. Acta Phys. -Chim. Sin., 2008, 24(05): 868-872.
[7] HUANG Jian-Shu;ZHANG Xiao-Gang. Microwave Synthesis of Pt-Au/MWCNTs Electrocatalyst and Its Catalytic Properties for Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2006, 22(12): 1551-1554.
[8] Tang Yong-Zheng, Tang Ye-Cang, Luo Shi-Zhong, Fu Zhong, Zhang Wen-Min. Microwave Preparation of Narrowly Distributed Surfactant-free Macromolecular Nanospheres[J]. Acta Phys. -Chim. Sin., 1998, 14(07): 620-623.
[9] Dai Chang-Hong,Liu Su-Lan,Zhang Xian-Peng. Microwave Synthesis of SiC Nanometer Whiskers[J]. Acta Phys. -Chim. Sin., 1997, 13(04): 380-384.
[10] Dai Chang-Hong,Zhang Xian-Peng,Zhang Jin-Song,Yang Yong-Jin,Cao Li-Hua,Xia Fei. Microwave Synthesis of AIN Nanometer Powder[J]. Acta Phys. -Chim. Sin., 1996, 12(11): 1049-1051.