Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (01): 100-104    DOI: 10.3866/PKU.WHXB201228100
ELECTROCHEMISTRY AND NEW ENERGY     
Electrochemical Performance of Vanadium Modified LiFe0.5Mn0.5PO4/C Cathode Materials for Lithium-Ion Batteries
GONG Qiang, WANG Hong, LIAO Xiao-Zhen, MA Wei, HE Yu-Shi, MA Zi-Feng
Institute of Electrochemical and Energy Technology, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Download:   PDF(1117KB) Export: BibTeX | EndNote (RIS)      

Abstract  Vanadium modified LiFe0.5Mn0.5PO4/C cathode materials with a nominal composition of (1-x)LiFe0.5Mn0.5PO4-xLi3V2(PO4)3/C (x=0, 0.1, 0.2, 0.25, 1) were prepared by a solid-state reaction using NH4VO3 as the vanadium source. The electrochemical performance of the LiFe0.5Mn0.5PO4-based compounds improved upon vanadium modification. The 0.8LiFe0.5Mn0.5PO4-0.2Li3V2(PO4)3/C (LFMP-LVP/C) sample exhibited the highest discharge capacity of 141 mAh·g-1 at 0.1C rate. X-ray diffraction analyses revealed a dual phase of the LFMP-LVP/C composite with the coexistence of an olivine-type LiFe0.5Mn0.5PO4/C phase and a NASICON-type Li3V2(PO4)3 phase. Energy dispersive X-ray spectroscopy (EDS) analysis indicates a uniform distribution of Fe, Mn, V, and P in the composite. The electronic conductivity of LFMP-LVP was found to be 2.7×10-7 S·cm-1, which is much higher than the value (1.9×10-8 S·cm-1) of LiFe0.5Mn0.5PO4 and similar to the value (2.3 × 10-7 S·cm-1) of pure Li3V2(PO4)3. Vanadium modification remarkably reduced the electrode polarization of the LFMP-LVP/C cathode during the charge-discharge procedure. This suggests that vanadium modification is an effective method to improve the electrochemical performance of olivine-type cathode materials.

Key wordsLithium-ion battery      LiFe0.5Mn0.5PO4      Li3V2(PO4)3-modified      Cathode material     
Received: 20 July 2011      Published: 19 October 2011
MSC2000:  O646  
  O649  
Fund:  

The project was supported by the National Natural Science Foundation of China (21073120, 20773087, 21006063) and Science and Technology Commission of Shanghai Municipality, China (09DZ1203603, 10DZ1202702).

Corresponding Authors: LIAO Xiao-Zhen     E-mail: liaoxz@sjtu.edu.cn
Cite this article:

GONG Qiang, WANG Hong, LIAO Xiao-Zhen, MA Wei, HE Yu-Shi, MA Zi-Feng. Electrochemical Performance of Vanadium Modified LiFe0.5Mn0.5PO4/C Cathode Materials for Lithium-Ion Batteries. Acta Phys. Chim. Sin., 2012, 28(01): 100-104.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201228100     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I01/100

(1) Tarascon, J. M.; Armand, M. Nature 2008, 451, 652.  
(2) Whittingham, M. S. Chem. Rev. 2004, 104, 4271.  
(3) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.  
(4) Delacourt, C.; Poizot, P.; Morcrette, M.; Tarascon, J. M.; Masquelier, C. Chem. Mater. 2004, 16, 93.  
(5) Liao, X. Z.; Ma, Z. F.;Wang, L.; Zhang, X. M.; Jiang, Y.; He, Y. S. Electrochem. Solid-State Lett. 2004, 7, A552.
(6) Li, G. H.; Azuma, H.; Tohda, M. Electrochem. Solid-State Lett. 2002, 5, A135.
(7) Delacourt, C.; Laffont. L.; Bouchet, R.,Wurm, C.; Leriche, J. B.; Morcrette, M.; Tarascon, J. M.; Masquelier, C. J. Electrochem. Soc. 2005, 152, A913.
(8) Kim, J. K.; Shin, C. R.; Ahn, J. H.; Matic, A, Jacobsson, P. Electrochem. Commun. 2011, 13, 1105.  
(9) Yonemura, M.; Yamada, A.; Takei, Y.; Sonoyama, N.; Kanno, R. J. Electrochem. Soc. 2004, 151, A1352.
(10) Yamada, A.; Kudo, Y.; Liu, K.Y. J. Electrochem. Soc. 2001, 148, A747.
(11) Zhang,Y.; Sun, C. S.; Zhou, Z. Electrochem. Commun. 2009, 11, 1183.  
(12) Honma,T.; Nagamine, K.; Komatsu, T. Ceramics International 2010, 36, 1137.  
(13) Hong, J.;Wang, F.;Wang, X. L.; Graetz, J. J. Power Sources 2011, 196, 3659.  
(14) Oh, S. M.; Jung, H. G.; Yoon, C. S.; Myung, S. T.; Chen, Z. H.; Aminee, K.; KSun, Y. J. Power Sources 2011, 196, 6924.  
(15) Burba, C. M.; Frech, R. J. Power Sources 2007, 172, 870.  
(16) Jiang, T.; Pan,W. C.;Wang, J.; Bie, X. F.; Du, F.;Wei, Y. J.; Wang, C. Z.; Chen, G. Electrochim. Acta 2010, 55, 3864.  
(17) Yin, S.C.; Strobel, P.S.; Grondey, H.; Nazar, L. F. Chem. Mater. 2004, 16, 1456.  
(18) Wang, L.; Li, Z. C.; Xu, H. J.; Zhang, K. L. J. Phys. Chem. C 2008, 112, 308.  
(19) Yang, M. R.; Ke,W. H.;Wu, S. H. J. Power Sources 2007, 165, 646.  
(20) Chen, X. J.; Cao, G. S.; Zhao, X. B.; Tu, J. P.; Zhu, T. J. J. Alloy. Compd. 2008, 463, 385.  
(21) Xiang, J. Y.; Tu, J. P.; Zhang, L.;Wang, X. L.; Zhou, Y.; Qiao, Y. Q.; Lu, Y. J. Power Sources 2010, 195, 8331.  
(22) Zheng, J. C.; Li, X. H.;Wang, Z. X.; Niu, S. S.; Liu, D. R.;Wu, L.; Li, L. J.; Li, J. H.; Guo, H. J. J. Power Sources 2010, 195, 2935.  
(23) Ma, J.; Li, B. H.; Du, H. D.; Xu, C. J.; Kang, F. Y. J. Electrochem. Soc. 2011, 158, A26.
(24) Li, G. H., Azuma, H., Tohda, M. J. Electrochem. Soc. 2002, 149, A743.
(25) Bini, M.; Ferrari, S.; Capsoni, D.; Massarotti, V. Electrochim. Acta 2011, 56, 2648.  
[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[2] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[3] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1533-1547.
[4] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[5] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[6] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[7] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[8] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2517-2522.
[9] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. Chim. Sin., 2017, 33(1): 18-27.
[10] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(1): 211-241.
[11] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2287-2292.
[12] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2293-2300.
[13] WUAi-Ming, XIA Guo-Feng, SHEN Shui-Yun, YIN Jie-Wei, MAO Ya, BAI Qing-You, XIE Jing-Ying, ZHANG Jun-Liang. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1866-1879.
[14] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1999-2006.
[15] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1489-1494.