Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (01): 105-110    DOI: 10.3866/PKU.WHXB201228105
Synthesis and Electrochemical Performance of Graphene Modified LiFePO4 Cathode Materials
XU Ke, SHEN Lai-Fa, MI Chang-Huan, ZHANG Xiao-Gang
College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
Download:   PDF(1379KB) Export: BibTeX | EndNote (RIS)      

Abstract  Graphene-modified mesoporous LiFePO4 microsphere composites were synthesized by a hydrothermal method and subsequent annealing. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, and galvanostatic charge-discharge techniques were used to characterize the morphology, structure and electrochemical performance of the resulting composites. The graphene-modified LiFePO4 microspheres exhibited a high discharge capacity of 141 mAh·g-1 at 1C, and 105 mAh·g-1 at 50C, while LiFePO4/C only delivered 137 mAh·g-1 at 1C, 64 mAh·g-1 at 50C in an aqueous electrolyte of 2 mol·L-1 LiNO3. The graphene-modified LiFePO4 exhibited excellent cyclability compared with LiFePO4/C, with a capacity retention of about 83.7% after 60 cycles versus about 70.2% for LiFePO4/C. The improved electrochemical performance is attributed to the formation of a three-dimensional (3D) graphene network.

Key wordsLithium iron phosphate      Graphene      Hydrothermal      Li-ion battery     
Received: 26 July 2011      Published: 20 October 2011
MSC2000:  O646  

The project was supported by the National Key Basic Research Program of China (973) (2007CB209703), National Natural Science Foundation of China (20873064, 21173120, 21103090), Jiangsu Innovation Program for Graduate Education, China (CXZZ11_0204), and Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics, China (BCXJ11-10).

Corresponding Authors: ZHANG Xiao-Gang     E-mail:
Cite this article:

XU Ke, SHEN Lai-Fa, MI Chang-Huan, ZHANG Xiao-Gang. Synthesis and Electrochemical Performance of Graphene Modified LiFePO4 Cathode Materials. Acta Phys. Chim. Sin., 2012, 28(01): 105-110.

URL:     OR

(1) Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.  
(2) Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1609.  
(3) Ravet, N.; Goodenough, J. B.; Besner, S.; Simoneau, M.; Hovington, P.; Armand, M. Proceedings of the 196th ECS Meeting, Honolulu, HI, Oct 1999; pp 17-22.
(4) Belharouak, I.; Johnson, C.; Amine, K. Electrochem. Commun. 2005, 7, 983.  
(5) Takeuchi, T.; Tabuchi, M.; Nakashima, A.; Nakamura, T.; Miwa, Y.; Kageyama, H.; Tatsumi, K. J. Power Sources 2005, 146, 575.  
(6) Chen, Z. Y.; Zhu, H. L.; Ji, S.; Fakir, R.; Linkov, V. Solid State Ionics 2008, 179, 1810.  
(7) Chen, Z. H.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A1184.
(8) Zhang, D.; Cai, R.; Zhou, Y. K.; Shao, Z. P.; Liao, X. Z.; Ma, Z. F. Electrochim. Acta 2010, 55, 2653.  
(9) Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123.  
(10) Wang, Y.;Wang, Y.; Hosono, E.;Wang, K.; Zhou, H. Angew. Chem. Int. Edit. 2008, 47, 7461.  
(11) Qian, J. F.; Zhou, M.; Cao, Y. L.; Ai, X. P.; Yang, H. X. J. Phys. Chem. C 2010, 114, 3477.  
(12) Liu, J. L.; Jiang, R. R.;Wang, X.; Huang, T.; Yu, A. S. J. Power Sources 2009, 194, 536.  
(13) Kostecki, R.; Schnyder, B.; Alliata, D.; Song, X.; Kinoshita, K.; Kotz, R. Thin Solid Films 2001, 396, 36.  
(14) He, P.; Zhang, X.;Wang, Y. G.; Cheng, L.; Xia, Y. Y. J. Electrochem Soc. 2008, 155, A144.
(15) Luo, J. Y.; Cui,W. J.; He, P.; Xia, Y. Y. J. Nat. Chem. 2010, 2, 760.  
(16) He, P.; Liu, J. L.; Cui,W. J.; Luo, J. Y.; Xia, Y. Y. Electrochim. Acta. 2011, 56, 2351.  
(17) Chen, S. Y.; Gao, B.; Su, L. H.; Mi, C. H.; Zhang, X. G. J. Solid State Electrochem. 2009, 13, 1361.  
(18) Su, F. Y.; You, C. H.; He, Y. B.; Lv,W.; Cui,W.; Jin, F. M.; Li, B. H.; Yang, Q. H.; Kang, F. Y. J. Mater. Chem. 2010, 20, 9644.  
(19) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.  
(20) Wang, D. Y.; Li, H.; Shi, S. Q.; Huang, X. J.; Chen, L. Q. Electrochim. Acta 2005, 50, 2955.  
(21) Shi, Z. C.; Ye,W. L.;Wang, Q.; Li, Y. X.; Yang, Y. Electrochim. Acta 2008, 53, 2665.  
(22) Szabo, T.; Berkesi, O.; Dekany, I. Carbon 2005, 43, 3186.  
(23) Burba, C. M.; Frech, R. J. Electrochem Soc. 2004, 151, A1032.
(24) Julien, C.M.; Zaghib, K.; Mauger, A.; Massot, M.; Salah, A. A.; Selmane, M.; Gendron, F. J. Appl. Phys. 2006, 100, 063511.  
(25) Dresselhaus, M.S.; Dresselhaus, G. Light Scattering in Solids, 3rd ed.; Springer: Berlin, 1982; p 3.
(26) Morishita, T.; Soneda, Y.; Hatori, H.; Inagaki, M. Electrochim. Acta 2007, 52, 2478.  
(27) Appapillai, A. T.; Mansour, A. N.; Cho, J.; Yang, S. H. Chem. Mater. 2007, 19, 5748.  
(28) Mai, L. Q.; Yang, F.; Zhao, Y. L.; Xu, X.; Xu, L.; Luo, Y. Z. Nat. Commun. 2011, 2, 381.  
(29) Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Yang, S. D.; Lu, X. Nanoscale 2011, 3, 572.  
[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. Chim. Sin., 2018, 34(2): 168-176.
[2] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[3] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[4] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[5] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[6] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[7] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[8] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[9] CHEN Fan, WANG Zhong-Yue, ZHANG Yan-Yan, YU Ke-Han, WENG Li-Xing, WEI Wei. Synthesis of Poly(acrylic acid)-Functionalized La1-xEuxF3 Nanocrystals with High Photoluminescence for Cellular Imaging[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1446-1452.
[10] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[11] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. Chim. Sin., 2017, 33(3): 520-529.
[12] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[13] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[14] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[15] QUAN Quan, XIE Shun-Ji, WANG Ye, XU Yi-Jun. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2404-2423.